Vitis vinifera canes, a source of stilbenoids against Spodoptera littoralis larvae

Abstract

Stilbenes are constitutively accumulated in grape canes at a high concentration of about 10 g kg−1 DW. Some of these compounds have antimicrobial activity and are involved in grapevine defence in leaves and fruits, acting as phytoalexins. In this work, we studied their insecticidal effects against Spodoptera littoralis larvae by using an extract from grapevine canes containing 27% (w/w) of total stilbenes and the major ones isolated from this extract (E-piceatannol, E-resveratrol, isohopeaphenol, E-ε-viniferin and E-vitisin B). The stilbenes isolated from the grapevine extract did not show any significant antifeedant effect or acute toxicity, but they did cause chronic mortality to the larvae population of an important polyphagous pest, S. littoralis. The tetramer, E-vitisin B, appeared to be the most effective compound with LC50 and LC90 values of 134 and 298 µg cm−2, respectively. Significant synergic relationships were found between some stilbenes, resulting in a significant increase in the insecticidal efficacy of the mixture of these substances. Taken together, these results suggest that grapevine canes are a good source of active substances for the development of botanical insecticides.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Article  Google Scholar 

  2. Adrian M, Jeandet P, Douillet-Breuil AC, Tesson L, Bessis R (2000) Stilbene content of mature Vitis vinifera berries in response to UV-C elicitation. J Agric Food Chem 48:6103–6105

    CAS  Article  PubMed  Google Scholar 

  3. Bass C, Denholm I, Williamson MS, Nauen R (2015) The global status of insect resistance to neonicotinoid insecticides. Pestic Biochem Physiol 121:78–87

    CAS  Article  PubMed  Google Scholar 

  4. Berthod A, Ruiz-Angel MJ, Carda-Broch S (2003) Elution–extrusion countercurrent chromatography. Use of the liquid nature of the stationary phase to extend the hydrophobicity window. Anal Chem 75:5886–5894

    CAS  Article  PubMed  Google Scholar 

  5. Berthod A, Hassoun M, Ruiz-Angel MJ (2005) Alkane effect in the Arizona liquid systems used in countercurrent chromatography. Anal Bioanal Chem 383:327–340

    CAS  Article  PubMed  Google Scholar 

  6. Britton RG, Kovoor C, Brown K (2015) Direct molecular targets of resveratrol: identifying key interactions to unlock complex mechanisms. Ann N Y Acad Sci 1348:124–133

    CAS  Article  PubMed  Google Scholar 

  7. Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp 1250–1318

    Google Scholar 

  8. Dinan L, Savchenko T, Whiting P, Sarker SD (1999) Plant natural products as insect steroid receptor agonists and antagonists. Pestic Sci 55:331–335

    CAS  Article  Google Scholar 

  9. Finney DJ (1971) Probit analysis. Cambridge University Press, London

    Google Scholar 

  10. FranceAgrimer (2012) L’observatoire national des ressources en biomasse—Evaluation des ressources disponibles en France—Les Etudes de FranceAgrimer, Edition October 2012

  11. Gammon DW (1980) Pyrethroid resistance in a strain of Spodoptera littoralis is correlated with decreased sensitivity of the CNS in vitro. Pestic Biochem Physiol 13:53–62

    CAS  Article  Google Scholar 

  12. Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research, 2nd edn. Wiley, NewYork

    Google Scholar 

  13. Guerrero A, Malo EA, Coll J, Quero C (2014) Semiochemical and natural product-based approaches to control Spodoptera spp. (Lepidoptera: Noctuidae). J Pest Sci 87:231–247

    Article  Google Scholar 

  14. Guerrero RF, Biais B, Richard T, Puertas B, Waffo-Téguo P, Mérillon JM, Cantos-Villar E (2016) Grapevine cane’s waste is a source of bioactive stilbenes. Ind Crops Prod 94:884–892

    CAS  Article  Google Scholar 

  15. Harmatha J, Dinan L (2003) Biological activities of lignans and stilbenoids associated with plant–insect chemical interactions. Phytochem Rev 2:321–330

    CAS  Article  Google Scholar 

  16. Hosny MM, Topper CP, Moawad GM, El-Saadany GB (1986) Economic damage thresholds of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) on cotton in Egypt. Crop Prot 5:100–104

    Article  Google Scholar 

  17. Houillé B, Besseau S, Courdavault V, Oudin A, Glévarec G, Delanoue G, Guérin L, Simkin AJ, Papon N, Clastre M, Giglioli-Guivarch N, Lanoue A (2015) Biosynthetic origin of resveratrol accumulation in grape canes during postharvested storage. J Agric Food Chem 63:1631–1638

    Article  PubMed  Google Scholar 

  18. Huang S, Han ZJ (2007) Mechanisms for multiple resistances in field populations of common cutworm, Spodoptera litura (Fabricius) in China. Pestic Biochem Physiol 87:14–22

    CAS  Article  Google Scholar 

  19. Isman MB (2015) A renaissance for botanical insecticides? Pest Manag Sci 71:1587–1590

    CAS  Article  PubMed  Google Scholar 

  20. Lambert C, Bisson J, Waffo Téguo P, Papastamoulis Y, Richard T, Corio-Costet MF, Mérillon JM, Cluzet S (2012) Phenolics and their antifungal role in grapevine wood decay: focus on the Botryosphaeriaceae family. J Agric Food Chem 60:11859–11868

    CAS  Article  PubMed  Google Scholar 

  21. Lambert C, Richard T, Renouf E, Bisson J, Waffo Téguo P, Bordenave L, Ollat N, Mérillon JM, Cluzet S (2013) Comparative analyses of stilbenoids in canes of major Vitis vinifera L. cultivars. J Agric Food Chem 61:11392–11399

    CAS  Article  PubMed  Google Scholar 

  22. Lv XQ, Feng G, Liu YQ, Nan X, Yang L (2014) CA-4, a natural cis-stilbene compound with potential insecticidal activity. Med Chem Res 23:3347–3352

    CAS  Article  Google Scholar 

  23. Papastamoulis Y, Richard T, Nassra M, Badoc A, Krisa S, Harakat D, Monti JP, Mérillon JM, Waffo-Téguo P (2014) Viniphenol A, a complex resveratrol hexamer from Vitis vinifera stalks: structural elucidation and protective effects against amyloid-β-induced toxicity in PC12 cells. J Nat Prod 77:213–217

    CAS  Article  PubMed  Google Scholar 

  24. Pavela R (2011) Antifeedant and larvicidal effects of some phenolic components of essential oils last lines of introduction against Spodoptera littoralis (Boisd.). J Essent Oil Bear Plants 14:266–273

    CAS  Article  Google Scholar 

  25. Pavela R (2014a) Insecticidal properties of Pimpinella anisum essential oils against the Culex quinquefasciatus and the non-target organism Daphnia magna. J Asia Pac Entomol 17:287–293

    CAS  Article  Google Scholar 

  26. Pavela R (2014b) Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep., Noctuidae) larvae. Ind Crops Prod 60:247–258

    CAS  Article  Google Scholar 

  27. Pavela R (2015a) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crops Prod 76:174–187

    CAS  Article  Google Scholar 

  28. Pavela R (2015b) Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol Res 114:3835–3853

    Article  PubMed  Google Scholar 

  29. Pavela R (2016) History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects—a review. Plant Prot Sci 52:229–241

    Article  Google Scholar 

  30. Pavela R, Benelli G (2016) Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci 21:1000–1007

    CAS  Article  PubMed  Google Scholar 

  31. Pavela R, Vrchotova N, Sera B (2008) Growth inhibitory effect of extracts from Reynoutria sp. plants against Spodoptera littoralis larvae. Agrociencia 42:573–584

    Google Scholar 

  32. Pavela R, Zabka M, Vrchotova N, Triska J, Kazda J (2013a) Selective effects of the extract from Angelica archangelica L. against Harmonia axyridis (Pallas)—an important predator of aphids. Ind Crops Prod 51:87–92

    CAS  Article  Google Scholar 

  33. Pavela R, Zabka M, Kalinkin V, Kotenev E, Gerus A, Shchenikova A, Chermenskaya T (2013b) Systemic applications of Azadirachtin in the control of Corythucha ciliata (Say, 1832) (Hemiptera, Tingidae), a pest of Platanus sp. Plant Prot Sci 49:27–33

    CAS  Google Scholar 

  34. Pavela R, Zabka M, Tylova T, Kresinova Z (2014) Insecticidal activity of compounds from Ailanthus altissima against Spodoptera littoralis larvae. Pak J Agric Sci 51:101–112

    Google Scholar 

  35. Pavela R, Žabka M, Bednář J, Tříska J, Vrchotová N (2016) New knowledge for yield, composition and insecticidal activity of essential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.). Ind Crops Prod 83:275–282

    CAS  Article  Google Scholar 

  36. Pawlus AD, Waffo Téguo P, Shaver J, Mérillon JM (2012) Stilbenoid chemistry from wine and the genus Vitis, a review. J Int Sci Vigne Vin 45:57–111

    Google Scholar 

  37. Pentzold S, Zagrobelny M, Bjarnholt N, Kroymann J, Vogel H, Olsen CE, Moller BL, Bak S (2015) Metabolism, excretion and avoidance of cyanogenic glucosides in insects with different feeding specializations. Insect Biochem Mol Biol 66:119–128

    CAS  Article  PubMed  Google Scholar 

  38. Pezet R, Gindro K, Viret O, Richter H (2004) Effects of resveratrol, viniferins and pterostilbene on Plasmopara viticola zoospore mobility and disease development. Vitis 43:145–148

    CAS  Google Scholar 

  39. Pezet R, Perret C, Jean-Denis JB, Tabacchi R, Gindro K, Viret O (2003) δ-viniferin, a resveratrol dehydromer: one of the major stilbenes synthesized by stressed grapevine leaves. J Agric Food Chem 51:5488–5492

    CAS  Article  PubMed  Google Scholar 

  40. Pratyusha S, Usha Rani P (2013) Induction of phenolic acids and metals in Arachis hypogea L. plants due to feeding of three Lepidopteran pests. Arthropod Plant Interact 7:517–525

    Article  Google Scholar 

  41. Rivière C, Pawlus AD, Mérillon JM (2012) Natural stilbenoids: distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Nat Prod Rep 29:1317–1333

    Article  PubMed  Google Scholar 

  42. Sadek MM, Hansson BS, Anderson P (2010) Does risk of egg parasitism affect choice of oviposition sites by a moth? A field and laboratory study. Basic Appl Ecol 11:135–143

    Article  Google Scholar 

  43. Schnee S, Queiroz EF, Voinesco F, Marcourt L, Dubuis PH, Wolfender JL, Gindro K (2013) Vitis vinifera canes, a new source of antifungal compounds against Plasmopara viticola, Erysiphe necator, and Botrytis cinerea. J Agric Food Chem 61:5459–5467

    CAS  Article  PubMed  Google Scholar 

  44. Schroder J (1999) The chalcone/stilbene synthase-type family of condensing enzymes. In: Barton DHR, Nakanishi K, Meth-Con O (eds) Comprehensive natural products chemistry, polyketides and other secondary metabolites including fatty acids and their derivatives. Elsevier, Amsterdam, pp 749–772

    Google Scholar 

  45. Shen T, Xie C-F, Wang X-N, Lou H-X (2013) Stilbenoids. In: Ramawat KG, Mérillon JM (eds) Natural products. Springer-Verlag, Berlin, pp 1901–1949

    Google Scholar 

  46. Tak J-H, Jovel E, Isman MB (2016) Contact, fumigant, and cytotoxic activities of thyme and lemongrass essential oils against larvae and an ovarian cell line of the cabbage looper, Trichoplusia ni. J Pest Sci 89:183–193

    Article  Google Scholar 

  47. Tong S-M, Feng M-G (2016) A mixture of putative sodium salts of camptothecin and bambootar is a novel botanical insecticide against rice planthoppers and stem borers. J Pest Sci 89:1003–1011

    Article  Google Scholar 

  48. Torres P, Avila JG, de Vivar AR, Garcia AM, Marin JC, Aranda E, Cespedes CL (2003) Antioxidant and insect growth regulatory activities of stilbenes and extracts from Yucca periculosa. Phytochem 64:463–473

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Technology Agency of the Czech Republic for their financial support of the botanical pesticide and basic substance research. Financial support for this work was provided by the Technology Agency of the CR (Project No. TA04020103).

Funding

The authors also wish to thank the Conseil Regional d’Aquitaine for their financial support in this research. The work was supported by the French National Research Agency (ANR LabCom program, Stilbene Innovation project, ANR-14-LAB5-0005-01), the Bordeaux Metabolome Facility and MetaboHUB (ANR-11-INBS-0010 project).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Mérillon.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by M.B. Isman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pavela, R., Waffo-Teguo, P., Biais, B. et al. Vitis vinifera canes, a source of stilbenoids against Spodoptera littoralis larvae. J Pest Sci 90, 961–970 (2017). https://doi.org/10.1007/s10340-017-0836-1

Download citation

Keywords

  • Natural insecticides
  • Spodoptera littoralis
  • Cane extract
  • Stilbenes
  • E-ε-viniferin, vitisin B
  • Isohopeaphenol
  • Vitis vinifera L.