The impact of adult diet on parasitoid reproductive performance

Abstract

Diet is one of the most common influences on parasitoid reproductive traits. The life span, mating ability, fecundity, fertility and sex ratio of parasitoids can be affected by the quality of the adult diet. In the field, parasitoids can rely on different hosts and non-host nutrient sources, such as floral and extrafloral nectar, hemipteran honeydew and pollen, and various artificial diets have been used in mass rearing. In addition, some parasitoid species obtain nutrients by feeding on their host while adult (host feeding). In this review, we summarize current knowledge on the impact of the adult diet on the reproductive behavior of hymenopteran and dipteran parasitoids, with a particular focus on longevity, offspring production and host searching traits. First, we focus on food preferences and learning abilities of parasitoids to discriminate high-quality diets. Second, we analyze the impact of the adult diet on longevity, examining different natural and artificial food sources as well as the effect of their concentration and frequency. Third, we highlight the impact of the adult diet on host foraging. Fourth, we review the impact of adult diet on parasitoid offspring with special reference to (1) egg load, maturation and resorption, (2) parasitism and (3) progeny production and sex ratio. Finally, a number of implications for biological control and integrated pest management are discussed.

This is a preview of subscription content, access via your institution.

References

  1. Altieri MA, van Schoonhoven A, Doll J (1977) The ecological role of weeds in insect pest management systems: a review illustrated by bean (Phaseolus vulgaris) cropping systems. Trop Pest Manag 23:195–205. doi:10.1080/09670877709412428

    Article  Google Scholar 

  2. Amat I, Besnard S, Foray V et al (2012) Fuelling flight in a parasitic wasp: which energetic substrate to use? Ecol Entomol 37:480–489. doi:10.1111/j.1365-2311.2012.01388.x

    Article  Google Scholar 

  3. Antolin MF, Williams RL (1989) Host feeding and egg production in Muscidifurax zaraptor (Hymenoptera: Pteromalidae). Fla Entomol 72:129–134

    Article  Google Scholar 

  4. Ashley TR, Gonzalez D (1974) Effect of various food substances on longevity and fecundity of Trichogramma. Environ Entomol 3:169–171

    CAS  Article  Google Scholar 

  5. Aung KSD, Takasu K, Ueno T, Takagi M (2012) Effect of host-feeding on reproduction in Ooencyrtus nezarae (Ishii) (Hymenoptera: Encyrtidae), an egg parasitoid of the bean bug Riptortus clavatus. J Fac Agric Kyushu Univ 57:115–120

    Google Scholar 

  6. Azzouz H, Giordanengo P, Wäckers FL, Kaiser L (2004) Effects of feeding frequency and sugar concentration on behavior and longevity of the adult aphid parasitoid: Aphidius ervi (Haliday) (Hymenoptera: Braconidae). Biol Control 31:445–452. doi:10.1016/j.biocontrol.2004.07.013

    Article  Google Scholar 

  7. Baggen LR, Gurr GM (1998) The influence of food on Copidosoma koehleri (Hymenoptera: Encyrtidae), and the use of flowering plants as a habitat management tool to enhance biological control of potato moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). Biol Control 11:9–17. doi:10.1006/bcon.1997.0566

    Article  Google Scholar 

  8. Bautista RC, Harris EJ, Vargas RI (2001) The fruit fly parasitoid Fopius arisanus: reproductive attributes of pre-released females and the use of added sugar as a potential food supplement in the field. Entomol Exp Appl 101:247–255. doi:10.1023/A:1019261228788

    Article  Google Scholar 

  9. Beach JP, Williams L, Hendrix DL, Price LD (2003) Different food sources affect the gustatory response of Anaphes iole, an egg parasitoid of Lygus spp. J Chem Ecol 29:1203–1222. doi:10.1023/A:1023837808291

    CAS  PubMed  Article  Google Scholar 

  10. Begum M, Gurr GM, Wratten SD et al (2006) Using selective food plants to maximize biological control of vineyard pests. J Appl Ecol 43:547–554. doi:10.1111/j.1365-2664.2006.01168.x

    Article  Google Scholar 

  11. Berndt LA, Wratten SD (2005) Effects of alyssum flowers on the longevity, fecundity, and sex ratio of the leafroller parasitoid Dolichogenidea tasmanica. Biol Control 32:65–69. doi:10.1016/j.biocontrol.2004.07.014

    Article  Google Scholar 

  12. Bezemer TM, Harvey JA, Mills NJ (2005) Influence of adult nutrition on the relationship between body size and reproductive parameters in a parasitoid wasp. Ecol Entomol 30:571–580. doi:10.1111/j.0307-6946.2005.00726.x

    Article  Google Scholar 

  13. Bianchi FJJA, Wäckers FL (2008) Effects of flower attractiveness and nectar availability in field margins on biological control by parasitoids. Biol Control 46:400–408. doi:10.1016/j.biocontrol.2008.04.010

    Article  Google Scholar 

  14. Biondi A, Desneux N, Amiens-Desneux E, Siscaro G, Zappalà L (2013) Biology and Developmental Strategies of the Palaearctic Parasitoid Bracon nigricans (Hymenoptera: Braconidae) on the Neotropical Moth Tuta absoluta (Lepidoptera: Gelechiidae). J Econ Entomol 106(4):1638–1647

    Article  Google Scholar 

  15. Boggs CL (1992) Resource allocation: exploring connections between foraging and life history. Funct Ecol 6:508. doi:10.2307/2390047

    Article  Google Scholar 

  16. Bracken GK (1965) Effects of dietary components on fecundity of the parasitoid Exeristes comstockii (Cress.) (Hymenoptera: Ichneumonidae). Can Entomol 97:1037–1041. doi:10.4039/Ent971037-10

    CAS  Article  Google Scholar 

  17. Briggs CJ, Nisbet RM, Murdoch WW et al (1995) Dynamical effects of host-feeding in parasitoids. J Anim Ecol 64:403. doi:10.2307/5900

    Article  Google Scholar 

  18. Canale A, Geri S, Benelli G (2014) Associative learning for host-induced fruit volatiles in Psyttalia concolor (Hymenoptera: Braconidae), a koinobiont parasitoid of tephritid flies. Bull Entomol Res 104:774–780. doi:10.1017/S0007485314000625

    CAS  PubMed  Article  Google Scholar 

  19. Chen X, Stansly PA (2014) Effect of holding diet on egg formation of Tamarixia radiata (Hymenoptera: Eulophidae), parasitoid of Diaphorina citri (Hemiptera: Psylloidae). Florida Entomol 97:491–495. doi:10.1653/024.097.0220

    Article  Google Scholar 

  20. Chen L, Onagbola EO, Fadamiro HY (2005) Effects of temperature, sugar availability, gender, mating, and size on the longevity of phorid fly Pseudacteon tricuspis (Diptera: Phoridae). Environ Entomol 34:246–255. doi:10.1603/0046-225X-34.2.246

    CAS  Article  Google Scholar 

  21. Cicero L, Sivinski J, Aluja M (2012) Effect of host diet and adult parasitoid diet on egg load dynamics and egg size of braconid parasitoids attacking Anastrepha ludens. Physiol Entomol 37:177–184. doi:10.1111/j.1365-3032.2012.00833.x

    Article  Google Scholar 

  22. Collier TR (1995) Host feeding, egg maturation, resorption, and longevity in the parasitoid Aphytis melinus (Hymenoptera: Aphelinidae). Ann Entomol Soc Am 88:206–214

    Article  Google Scholar 

  23. Coombs MT (1997) Influence of adult food deprivation and body size on fecundity and longevity of Trichopoda giacomellii : a South American parasitoid of Nezara viridula. Biol Control 8:119–123. doi:10.1006/bcon.1996.0486

    Article  Google Scholar 

  24. Corbet SA, Willmer PG, Beament JWL et al (1979) Post-secretory determinants of sugar concentration in nectar. Plant, Cell Environ 2:293–308. doi:10.1111/j.1365-3040.1979.tb00084.x

    Article  Google Scholar 

  25. Cronin JT, Strong DR (1990) Biology of Anagrus delicatus (Hymenoptera: Mymaridae), an egg parasitoid of Prokelisia marginata (Homoptera: Delphacidae). Ann Entomol Soc Am 83:846–854. doi:10.1093/aesa/83.4.846

    Article  Google Scholar 

  26. Divya S, Kalyanasundaram M, Karuppuchamy P (2011) Effect of adult nutrition on longevity and parasitisation efficiency of Acerophagus papayae Noyes and Schauff (Hymenoptera: Encyrtidae). J Biol Control 25:316–319

    Google Scholar 

  27. Douglas AE (2003) The nutritional physiology of Aphids. Adv Insect Phys 31:73–140. doi:10.1016/S0065-2806(03)31002-1

    CAS  Article  Google Scholar 

  28. Dulaurent AM, Rossi JP, Deborde C et al (2011) Honeydew feeding increased the longevity of two egg parasitoids of the pine processionary moth. J Appl Entomol 135:184–194. doi:10.1111/j.1439-0418.2010.01547.x

    Article  Google Scholar 

  29. Ellers J (1996) Fat and eggs: an alternative method to measure the trade-off between survival and reproduction in insect parasitoids. Neth J Zool 46:227–235

    Article  Google Scholar 

  30. Ellers J, van Alphen JJM (1997) Life history evolution in Asobara tabida: plasticity in allocation of fat reserves to survival and reproduction. J Evol Biol 10:771–785. doi:10.1046/j.1420-9101.1997.10050771.x

    Article  Google Scholar 

  31. Ellers J, Ruhe B, Visser B (2011) Discriminating between energetic content and dietary composition as an explanation for dietary restriction effects. J Insect Physiol 57:1670–1676. doi:10.1016/j.jinsphys.2011.08.020

    CAS  PubMed  Article  Google Scholar 

  32. England S, Evans EW (1997) Effects of pea aphid (Homoptera: Aphididae) honeydew on longevity and fecundity of the alfalfa weevil Bathyplectes curculionis (Hymenoptera: Ichneumonidae). Environ Entomol 26:1437–1441

    Article  Google Scholar 

  33. Evans EW, England S (1996) Indirect interactions in biological control of insects: pests and natural enemies in alfalfa. Ecol Appl 6:920–930

    Article  Google Scholar 

  34. Fadamiro HY, Heimpel GE (2001) Effects of partial sugar deprivation on lifespan and carbohydrate mobilization in the parasitoid Macrocentrus grandii (Hymenoptera: Braconidae). Ann Entomol Soc Am 94(6):909–916

    CAS  Article  Google Scholar 

  35. Faria CA, Wäckers FL, Turlings TCJ (2008) The nutritional value of aphid honeydew for non-aphid parasitoids. Basic Appl Ecol 9:286–297. doi:10.1016/j.baae.2007.02.001

    Article  Google Scholar 

  36. Fischbein D, Corley JC, Villacide JM, Bernstein C (2011) The Influence of food and con-specifics on the flight potential of the parasitoid Ibalia leucospoides. J Insect Behav 24:456–467. doi:10.1007/s10905-011-9270-z

    Article  Google Scholar 

  37. Fischbein D, Bernstein C, Corley JC (2013) Linking reproductive and feeding strategies in the parasitoid Ibalia leucospoides: does feeding always imply profit? Evol Ecol 27:619–634. doi:10.1007/s10682-012-9608-9

    Article  Google Scholar 

  38. Fletcher JP, Hughes JP, Harvey IF (1994) Life expectancy and egg load affect oviposition decisions of a solitary parasitoid. Proc R Soc Lond B 258(1352):163–167

    CAS  Article  Google Scholar 

  39. Fuchsberg JR, Yong TH, Losey JE et al (2007) Evaluation of corn leaf aphid (Rhopalosiphum maidis; Homoptera: Aphididae) honeydew as a food source for the egg parasitoid Trichogramma ostriniae (Hymenoptera: Trichogrammatidae). Biol Control 40:230–236. doi:10.1016/j.biocontrol.2006.10.009

    Article  Google Scholar 

  40. Giron D, Casas J (2003) Lipogenesis in an adult parasitic wasp. J Insect Physiol 49:141–147. doi:10.1016/S0022-1910(02)00258-5

    CAS  PubMed  Article  Google Scholar 

  41. Giron D, Rivero A, Mandon N et al (2002) The physiology of host feeding in parasitic wasps: implications for survival. Funct Ecol 16:750–757

    Article  Google Scholar 

  42. Giron D, Pincebourde S, Casas J (2004) Lifetime gains of host-feeding in a synovigenic parasitic wasp. Physiol Entomol 29:436–442. doi:10.1111/j.0307-6962.2004.00414.x

    Article  Google Scholar 

  43. Giunti G, Canale A, Messing RH et al (2015) Parasitoid learning: current knowledge and implications for biological control. Biol Control 90:208–219. doi:10.1016/j.biocontrol.2015.06.007

    Article  Google Scholar 

  44. Godfray HCJ, Werren JH (1996) Recent developments in sex ratio studies. Trends Ecol Evol 11:59–63. doi:10.1016/0169-5347(96)81043-3

    CAS  PubMed  Article  Google Scholar 

  45. Gomez J, Barrera JF, Liedo P, Valle J (2012) Influence of age and diet on performance of Cephalonomia stephanoderis Betrem (Hymenoptera: Bethylidae) a parasitoid of the coffee berry borer. Rev Bras Entomol 56:95–100

    Article  Google Scholar 

  46. Gurr GM, Nicol HI (2000) Effect of food on longevity of adults of Trichogramma carverae Oatman and Pinto and Trichogramma nr brassicae Bezdenko (Hymenoptera: Trichogrammatidae). Aust J Entomol 39:185–187. doi:10.1046/j.1440-6055.2000.00159.x

    Article  Google Scholar 

  47. Harvey JA, Cloutier J, Visser B et al (2012) The effect of different dietary sugars and honey on longevity and fecundity in two hyperparasitoid wasps. J Insect Physiol 58:816–823. doi:10.1016/j.jinsphys.2012.03.002

    CAS  PubMed  Article  Google Scholar 

  48. Hegazi E, Khafagi W, Schlyter F (2013) Egg maturation dynamics of the parasitoid Microplitis rufiventris: Starvation speeds maturation in early life. Physiol Entomol 38:233–240. doi:10.1111/phen.12027

    Article  Google Scholar 

  49. Heimpel GE, Jervis MA (2005) Does floral nectar improve biological control by parasitoids. In: Wäckers FL, van Rijn PCJ, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge, pp 267–304

    Chapter  Google Scholar 

  50. Heimpel GE, Rosenheim JA, Kattari D (1997) Adult feeding and lifetime reproductive success in the parasitoid Aphytis melinus. Entomol Exp Appl 83:305–315. doi:10.1046/j.1570-7458.1997.00185.x

    Article  Google Scholar 

  51. Hirose Y, Mitsunaga T, Yano E, Goto C (2009) Effects of sugars on the longevity of adult females of Eretmocerus eremicus and Encarsia formosa (Hymenoptera: Aphelinidae), parasitoids of Bemisia tabaci and Trialeurodes vaporariorum (Hemiptera: Alyerodidae), as related to their honeydew feeding and hos. Appl Entomol Zool 44:175–181. doi:10.1303/aez.2009.175

    Article  Google Scholar 

  52. Hogervorst PAM, Wäckers FL, Romeis J (2007a) Effects of honeydew sugar composition on the longevity of Aphidius ervi. Entomol Exp Appl 122:223–232. doi:10.1111/j.1570-7458.2006.00505.x

    CAS  Article  Google Scholar 

  53. Hogervorst PAM, Wäckers FL, Romeis J (2007b) Detecting nutritional state and food source use in field-collected insects that synthesize honeydew oligosaccharides. Funct Ecol 21:936–946

    Article  Google Scholar 

  54. Hogervorst PAM, Wäckers FL, Woodring J, Romeis J (2009) Snowdrop lectin (Galanthus nivalis agglutinin) in aphid honeydew negatively affects survival of a honeydew- consuming parasitoid. Agric For Entomol 11:161–173. doi:10.1111/j.1461-9563.2008.00412.x

    Article  Google Scholar 

  55. Hopkinson JE, Zalucki MP, Murray DAH (2013) Honeydew as a source of nutrition for Lysiphlebus testaceipes (Cresson) (Hymenoptera: Braconidae): effect of adult diet on lifespan and egg load. Aust J Entomol 52:14–19. doi:10.1111/j.1440-6055.2012.00875.x

    Article  Google Scholar 

  56. Hougardy E, Mills NJ (2006) The influence of host deprivation and egg expenditure on the rate of dispersal of a parasitoid following field release. Biol Control 37:206–213

    Article  Google Scholar 

  57. Hougardy E, Mills NJ (2007) Influence of host deprivation and egg expenditure on the patch and host-finding behavior of the parasitoid wasp Mastrus ridibundus. J Insect Behav 20:229–246. doi:10.1007/s10905-007-9077-0

    Article  Google Scholar 

  58. Hougardy E, Bezemer TM, Mills NJ (2005) Effects of host deprivation and egg expenditure on the reproductive capacity of Mastrus ridibundus, an introduced parasitoid for the biological control of codling moth in California. Biol Control 33:96–106

    Article  Google Scholar 

  59. Hu H-Y, Chen Z-Z, Duan B-S et al (2012) Effects of female diet and age on offspring sex ratio of the solitary parasitoid Pachycrepoideus vindemmiae (Rondani) (Hymenoptera, Pteromalidae). Rev Bras Entomol 56:259–262. doi:10.1590/S0085-56262012005000028

    Article  Google Scholar 

  60. Idris AB, Grafius E (1995) Wildflowers as nectar sources for Diadegma insulare (Hymenoptera: Ichneumonidae), a parasitoid of diamondback moth (Lepidoptera: Yponomeutidae). Environ Entomol 24:1726–1735

    Article  Google Scholar 

  61. Irvin NA, Hoddle MS, Castle SJ (2007) The effect of resource provisioning and sugar composition of foods on longevity of three Gonatocerus spp., egg parasitoids of Homalodisca vitripennis. Biol Control 40:69–79. doi:10.1016/j.biocontrol.2006.09.005

    Article  Google Scholar 

  62. Jacob HS, Evans EW (2000) Influence of carbohydrate foods and mating on longevity of the parasitoid Bathyplectes curculionis (Hymenoptera: Ichneumonidae). Environ Entomol 29:1088–1095. doi:10.1603/0046-225x-29.5.1088

    Article  Google Scholar 

  63. Jacob HS, Evans EW (2001) Influence of food deprivation on foraging decisions of the parasitoid Bathyplectes curculionis (Hymenoptera: Ichneumonidae). Ann Entomol Soc Am 94:605–611. doi:10.1603/0013-8746(2001)094[0605:IOFDOF]2.0.CO;2

    Article  Google Scholar 

  64. Jacob HS, Evans EW (2004) Influence of different sugars on the longevity of Bathyplectes curculionis (Hym., Ichneumonidae). J Appl Entomol 128:316–320. doi:10.1111/j.1439-0418.2004.00849.x

    Article  Google Scholar 

  65. Jacob HS, Joder A, Batchelor KL (2006) Biology of Stethynium sp. (Hymenoptera: Mymaridae), a native parasitoid of an introduced weed biological control agent. Environ Entomol 35:630–636. doi:10.1603/0046-225X-35.3.630

    Article  Google Scholar 

  66. Jamont M, Crépellière S, Jaloux B (2013) Effect of extrafloral nectar provisioning on the performance of the adult parasitoid Diaeretiella rapae. Biol Control 65:271–277. doi:10.1016/j.biocontrol.2013.01.010

    Article  Google Scholar 

  67. Jervis MA, Kidd NAC (1986) Host-feeding strategies in hymenopteran parasitoids. Biol Rev 61:395–434. doi:10.1111/j.1469-185X.1986.tb00660.x

    Article  Google Scholar 

  68. Jervis MA, Kidd NAC, Fitton MG et al (1993) Flower-visiting by hymenopteran parasitoids. J Nat Hist 27:67–105. doi:10.1080/00222939300770051

    Article  Google Scholar 

  69. Jervis MA, Kidd NAC, Heimpel GE (1996) Parasitoid adult feeding behaviour and biological control-a review.  Biocontrol News Inform 17:11N–26N

    Google Scholar 

  70. Jervis MA, Heimpel GE, Ferns PN et al (2001) Life-history strategies in parasitoid wasps: a comparative analysis of “ovigeny”. J Anim Ecol 70:442–458. doi:10.1046/j.1365-2656.2001.00507.x

    Article  Google Scholar 

  71. Jervis MA, Ellers J, Harvey JA (2008) Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annu Rev Entomol 53:361–385. doi:10.1146/annurev.ento.53.103106.093433

    CAS  PubMed  Article  Google Scholar 

  72. Kapranas A, Luck RF (2008) Egg maturation, host feeding, and longevity in two Metaphycus parasitoids of soft scale insects. Biol Control 47:147–153

    Article  Google Scholar 

  73. Kidd NAC, Jervis MA (1991) Host-feeding and oviposition strategies of parasitoids in relation to host stage. Res Popul Ecol (Kyoto) 33:13–28. doi:10.1007/BF02514570

    Article  Google Scholar 

  74. Kugimiya S, Shimoda T, Mcneil JN, Takabayashi J (2010) Females of Cotesia vestalis, a parasitoid of diamondback moth larvae, learn to recognise cues from aphid-infested plants to exploit honeydew. Ecol Entomol 35:538–541. doi:10.1111/j.1365-2311.2010.01207.x

    Article  Google Scholar 

  75. Lee JC, Heimpel GE (2008a) Effect of floral nectar, water, and feeding frequency on Cotesia glomerata longevity. Biocontrol 53(2):289–294

    Article  Google Scholar 

  76. Lee JC, Heimpel GE (2008b) Floral resources impact longevity and oviposition rate of a parasitoid in the field. J Anim Ecol 77:565–572. doi:10.1111/j.1365-2656.2008.01355.x

    PubMed  Article  Google Scholar 

  77. Lee JC, Heimpel GE, Leibee GL (2004) Comparing floral nectar and aphid honeydew diets on the longevity and nutrient levels of a parasitoid wasp. Entomol Exp Appl 111:189–199. doi:10.1111/j.0013-8703.2004.00165.x

    Article  Google Scholar 

  78. Lee JC, Andow DA, Heimpel GE (2006) Influence of floral resources on sugar feeding and nutrient dynamics of a parasitoid in the field. Ecol Entomol 31:470–480. doi:10.1111/j.1365-2311.2006.00800.x

    Article  Google Scholar 

  79. Lenaerts M, Abid L, Paulussen C et al (2016) Adult parasitoids of honeydew-producing insects prefer honeydew sugars to cover their energetic needs. J Chem Ecol. doi:10.1007/s10886-016-0764-1

    PubMed  Google Scholar 

  80. Li S, Tan X, Desneux N et al (2015) Innate positive chemotaxis to pollen from crops and banker plants in predaceous biological control agents: towards new field lures? Sci Rep 5:12729. doi:10.1038/srep12729

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. Lightle D, Ambrosino M, Lee JC (2010) Sugar in moderation: sugar diets affect short-term parasitoid behaviour. Physiol Entomol 35:179–185. doi:10.1111/j.1365-3032.2009.00718.x

    CAS  Article  Google Scholar 

  82. Liu WX, Wang WX, Zhang YB et al (2015) Adult diet affects the life history and host-killing behavior of a host-feeding parasitoid. Biol Control 81:58–64. doi:10.1016/j.biocontrol.2014.11.002

    Article  Google Scholar 

  83. McDougall SJ, Mills NJ (1997) The influence of hosts, temperature and food sources on the longevity of Trichogramma platneri. Entomol Exp Appl 83:195–203. doi:10.1023/A:1002903720301

    Article  Google Scholar 

  84. Mitsunaga T, Shimoda T, Yano E (2004) Influence of food supply on longevity and parasitization ability of a larval endoparasitoid, Cotesia plutellae (Hymenoptera: Braconidae). Appl Entomol Zool 39:691–697. doi:10.1303/aez.2004.691

    Article  Google Scholar 

  85. Mitsunaga T, Mukawa S, Shimoda T, Suzuki Y (2006) The influence of food supply on the parasitoid against Plutella xylostella L. (Lepidoptera: Yponomeutidae) on the longevity and fecundity of the pea leafminer, Chromatomyia horticola (Goureau) (Diptera: Agromyzidae). Appl Entomol Zool 41:277–285. doi:10.1303/aez.2006.277

    Article  Google Scholar 

  86. Mondy N, Corio-Costet M-F, Bodin A et al (2006) Importance of sterols acquired through host feeding in synovigenic parasitoid oogenesis. J Insect Physiol 52:897–904. doi:10.1016/j.jinsphys.2006.03.007

    CAS  PubMed  Article  Google Scholar 

  87. Morales-Ramos JA, Rojas MG, King EG (1996) Significance of adult nutrition and oviposition experience on longevity and attainment of full fecundity of Catolaccus grandis (Hymenoptera: Pteromalidae). Ann Entomol Soc Am 89:555–563. doi:10.1093/aesa/89.4.555

    Article  Google Scholar 

  88. Mutitu EK, Garnas JR, Hurley BP et al (2013) Biology and rearing of Cleruchoides noackae (Hymenoptera: Mymaridae), an egg parasitoid for the biological control of Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae). J Econ Entomol 106:1979–1985. doi:10.1603/EC13135

    PubMed  Article  Google Scholar 

  89. Narváez A, Cancino J, Daza NC, Wyckhuys KAG (2012) Effect of different dietary resources on longevity, carbohydrate metabolism, and ovarian dynamics in two fruit fly parasitoids. Arthropod Plant Interact 6:361–374. doi:10.1007/s11829-012-9188-1

    Article  Google Scholar 

  90. Nurullahoglu U, Ergin E (2009) Effects of dietary fatty acids on the fecundity of the endoparasitoid Pimpla turionellae L. (Hymenopter: Ichneumonidae). J Appl Biol Sci 3:109–115

    Google Scholar 

  91. Olson DM, Andow DA (1998) Larval crowding and adult nutrition effects on longevity and fecundity of female Trichogramma nubilale Ertle and Davis (Hymenoptera: Trichogrammatidae). Environ Entomol 27:508–514. doi:10.1093/ee/27.2.508

    Article  Google Scholar 

  92. Olson DL, Nechols JR (1995) Effects of squash leaf trichome exudates and honey on adult feeding, survival, and fecundity of the squash bug (Heteroptera: Coreidae) egg parasitoid Gryon pennsylvanicum (Hymenoptera: Scelionidae). Environ Entomol 24:454–458

    Article  Google Scholar 

  93. Olson DM, Fadamiro H, Lundgren JG, Heimpel GE (2000) Effects of sugar feeding on carbohydrate and lipid metabolism in a parasitoid wasp. Physiol Entomol 25:17–26. doi:10.1046/j.1365-3032.2000.00155.x

    CAS  Article  Google Scholar 

  94. Olson DM, Rains GC, Meiners T et al (2003) Parasitic wasps learn and report diverse chemicals with unique conditionable behaviors. Chem Senses 28:545–549

    CAS  PubMed  Article  Google Scholar 

  95. Onagbola EO, Fadamiro HY, Mbata GN (2007) Longevity, fecundity, and progeny sex ratio of Pteromalus cerealellae in relation to diet, host provision, and mating. Biol Control 40:222–229. doi:10.1016/j.biocontrol.2006.10.010

    Article  Google Scholar 

  96. Özalp P, Emre I (2001) The effects of carbohydrates upon the survival and reproduction of adult female Pimpla turionellae L. (Hym., Ichneumonidae). J Appl Entomol 125:177–180. doi:10.1046/j.1439-0418.2001.00528.x

    Article  Google Scholar 

  97. Pietrantuono AL, Fernández-Arhex V, Jofré N, Corley JC (2012) Food and host searching decisions made by Ibalia leucospoides (Hymenoptera: Ibaliidae), a parasitoid of Sirex noctilio (Hymenoptera:Siricidae). J Insect Behav 25:320–327. doi:10.1007/s10905-011-9301-9

    Article  Google Scholar 

  98. Richard R, Casas J (2009) Stochasticity and controllability of nutrient sources in foraging: host-feeding and egg resorption in parasitoids. Ecol Monogr 79:465–483. doi:10.1890/08-1566.1

    Article  Google Scholar 

  99. Rivero A, Casas J (1999) Incorporating physiology into parasitoid behavioral ecology: the allocation of nutritional resources. Res Popul Ecol (Kyoto) 41:39–45. doi:10.1007/PL00011981

    Article  Google Scholar 

  100. Roitberg BD, Mangel M, Lalonde RG et al (1992) Seasonal dynamic shifts in patch exploitation by parasitic wasps. Behav Ecol 3(2):156–165

    Article  Google Scholar 

  101. Rollin O, Benelli G, Benvenuti S et al (2016) Weed-insect pollinator networks as bioindicators of ecological sustainability in agriculture: a review. Agron Sustain Dev 36:8. doi:10.1007/s13593-015-0342-x

    Article  Google Scholar 

  102. Russell M (2015) A meta-analysis of physiological and behavioral responses of parasitoid wasps to flowers of individual plant species. Biol Control 82:96–103

    Article  Google Scholar 

  103. Sato M, Takasu K (2000) Food odor learning by both sexes of the pupal parasitoid Pimpla alboannulatus Uchida (Hymenoptera: Ichneumonidae). J Insect Behav 13:263–272

    CAS  Article  Google Scholar 

  104. Schmale I, Wäckers FL, Cardona C, Dorn S (2001) Control potential of three hymenopteran parasitoid species against the bean weevil in stored beans: the effect of adult parasitoid nutrition on longevity and progeny production. Biol Control 21:134–139. doi:10.1006/bcon.2000.0911

    Article  Google Scholar 

  105. Segoli M, Rosenheim JA (2013) Spatial and temporal variation in sugar availability for insect parasitoids in agricultural fields and consequences for reproductive success. Biol Control 67:163–169. doi:10.1016/j.biocontrol.2013.07.013

    Article  Google Scholar 

  106. Shimoda T, Mitsunaga T, Uefune M et al (2014) A food-supply device for maintaining Cotesia vestalis, a larval parasitoid of the diamondback moth Plutella xylostella, in greenhouses. Biocontrol 59:681–688. doi:10.1007/s10526-014-9611-x

    Article  Google Scholar 

  107. Siekmann G, Tenhumberg B, Keller MA (2001) Feeding and survival in parasitic wasps: sugar concentration and timing matter. Oikos 95:425–430. doi:10.1034/j.1600-0706.2001.950307.x

    Article  Google Scholar 

  108. Siekmann G, Keller MA, Tenhumberg B (2004) The sweet tooth of adult parasitoid Cotesia rubecula: ignoring hosts for nectar. J Insect Behav 17:459–476. doi:10.1023/B:JOIR.0000042535.76279.c7

    Article  Google Scholar 

  109. Sigsgaard L, Betzer C, Naulin C (2013) The effect of floral resources on parasitoid and host longevity: prospects for conservation biological control in strawberries. J Insect Sci 13:1–17. doi:10.1673/031.013.10401

    Article  Google Scholar 

  110. Singh R, Singh K, Upadhyay BS (2000) Honeydew as a food source for an aphid parasitoid Lipolexis scutellaris Mackauer (Hymenoptera:Braconidae). J Adv Zool 21:77–83

    Google Scholar 

  111. Sisterson MS, Averill AL (2002) Costs and benefits of food foraging for a braconid parasitoid. J Insect Behav 15:571–588. doi:10.1023/A:1016389402543

    Article  Google Scholar 

  112. Sivinski J, Aluja M, Holler T (2006) Food sources for adult Diachasmimorpha longicaudata, a parasitoid of tephritid fruit flies: effects on longevity and fecundity. Entomol Exp Appl 118:193–202. doi:10.1111/j.1570-7458.2006.00379.x

    Article  Google Scholar 

  113. Soyelu OJ (2013) Suitability of a novel diet for a parasitic wasp, Cotesia plutellae. J Insect Sci 13:86. doi:10.1673/031.013.8601

    PubMed  PubMed Central  Article  Google Scholar 

  114. Stanley-Samuelson DW (1994) The biological significance of prostaglandins and related eicosanoids in invertebrates. Am Zool 34:589–598. doi:10.1093/icb/34.6.589

    CAS  Article  Google Scholar 

  115. Starý P (1969) Biology of aphid parasites (Hymenoptera: Aphidiidae) with respect to integrated control. Anzeiger für Schädlingskunde 42:190

    Google Scholar 

  116. Stokkebo S, Hardy IC (2000) The importance of being gravid: egg load and contest outcome in a parasitoid wasp. Anim Behav 59:1111–1118. doi:10.1006/anbe.2000.1407

    CAS  PubMed  Article  Google Scholar 

  117. Takasu K, Hirose Y (1991) Host searching behavior in the parasitoid Ooencyrtus nezarae Ishii (Hymenoptera:Encyrtidae) as influenced by non-host food deprivation. Appl Entomol Zool 26:415–417. doi:10.1303/aez.26.415

    Google Scholar 

  118. Takasu K, Lewis WJ (1995) Importance of adult food sources to host searching of the larval parasitoid Microplitis croceipes. Biol Control 5:25–30

    Article  Google Scholar 

  119. Tena A, Pekas A, Wäckers FL, Urbaneja A (2013a) Energy reserves of parasitoids depend on honeydew from non-hosts. Ecol Entomol 38:278–289. doi:10.1111/een.12018

    Article  Google Scholar 

  120. Tena A, Llácer E, Urbaneja A (2013b) Biological control of a non-honeydew producer mediated by a distinct hierarchy of honeydew quality. Biol Control 67:117–122

    Article  Google Scholar 

  121. Tena A, Pekas A, Cano D et al (2015) Sugar provisioning maximizes the biocontrol service of parasitoids. J Appl Ecol 52:795–804. doi:10.1111/1365-2664.12426

    CAS  Article  Google Scholar 

  122. Tena A, Wäckers FL, Heimpel GE et al (2016) Parasitoid nutritional ecology in a community context: the importance of honeydew and implications for biological control. Curr Opin Insect Sci 14:100–104

    PubMed  Article  Google Scholar 

  123. Teraoka T, Numata H (2000) Effect of feeding on reproduction and overwintering in female adults of Ooencyrtus nezarae Ishii (Hymenoptera: Encyrtidae). Appl Entomol Zool 35:361–367

    Article  Google Scholar 

  124. Tompkins JML, Wratten SD, Wäckers FL (2010) Nectar to improve parasitoid fitness in biological control: does the sucrose:hexose ratio matter? Basic Appl Ecol 11:264–271. doi:10.1016/j.baae.2009.12.010

    Article  Google Scholar 

  125. Traugott M, Kamenova S, Ruess L et al (2013) Empirically characterising trophic networks: what emerging DNA-based methods, stable isotope and fatty acid analyses can offer. Adv Ecol Res 49:177–224. doi:10.1016/B978-0-12-420002-9.00003-2

    Article  Google Scholar 

  126. Tunçbilek AŞ, Çinar N, Canpolat Ü (2012) Effects of artificial diets and floral nectar on longevity and progeny production of Trichogramma euproctidis Girault (Hymenoptera: Trichogrammatidae). Turkiye Entomoloji Derg 36:183–191

    Google Scholar 

  127. Varennes YD, Boyer S, Wratten SD (2016) Nectar from oilseed rape and floral subsidies enhances longevity of an aphid parasitoid more than does host honeydew. Biocontrol 61(6):631–638

    Article  Google Scholar 

  128. Vattala HD, Wratten SD, Phillips CB, Wäckers FL (2006) The influence of flower morphology and nectar quality on the longevity of a parasitoid biological control agent. Biol Control 39:179–185. doi:10.1016/j.biocontrol.2006.06.003

    Article  Google Scholar 

  129. Visser B, Ellers J (2008) Lack of lipogenesis in parasitoids: a review of physiological mechanisms and evolutionary implications. J Insect Physiol 54(9):1315–1322. doi:10.1016/j.jinsphys.2008.07.014

    CAS  PubMed  Article  Google Scholar 

  130. Visser B, Ellers J (2012) Effects of a lipid-rich diet on adult parasitoid income resources and survival. Biol Control 60:119–122. doi:10.1016/j.biocontrol.2011.11.008

    CAS  Article  Google Scholar 

  131. Visser B, Le Lann C, den Blanken FJ et al (2010) Loss of lipid synthesis as an evolutionary consequence of a parasitic lifestyle. Proc Natl Acad Sci USA 107:8677–8682. doi:10.1073/pnas.1001744107

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. Völkl W, Kroupa A (1997) Effects of adult mortality risks on parasitoid foraging tactics. Anim Behav 54:349–359. doi:10.1006/anbe.1996.0462

    Article  Google Scholar 

  133. Vollhardt IMG, Bianchi FJJA, Wäckers FL et al (2010) Nectar vs. honeydew feeding by aphid parasitoids: does it pay to have a discriminating palate? Entomol Exp Appl 137:1–10. doi:10.1111/j.1570-7458.2010.01025.x

    Article  Google Scholar 

  134. Wäckers FL (1994) The effect of food deprivation on the innate visual and olfactory preferences in the parasitoid Cotesia rubecula. J Insect Physiol 40:641–649. doi:10.1016/0022-1910(94)90091-4

    Article  Google Scholar 

  135. Wäckers FL (1999) Gustatory response by the hymenopteran parasitoid Cotesia glomerata to a range of nectar and honeydew sugars. J Chem Ecol 25:2863–2877. doi:10.1023/A:1020868027970

    Article  Google Scholar 

  136. Wäckers FL (2000) Do oligosaccharides reduce the suitability of honeydew for predators and parasitoids? A further facet to the function of insect-synthesized honeydew sugars. Oikos 90:197–201. doi:10.1034/j.1600-0706.2000.900124.x

    Article  Google Scholar 

  137. Wäckers FL (2001) A comparison of nectar- and honeydew sugars with respect to their utilization by the hymenopteran parasitoid Cotesia glomerata. J Insect Physiol 47:1077–1084

    PubMed  Article  Google Scholar 

  138. Wäckers FL (2004) Assessing the suitability of flowering herbs as parasitoid food sources: flower attractiveness and nectar accessibility. Biol Control 29:307–314. doi:10.1016/j.biocontrol.2003.08.005

    Article  Google Scholar 

  139. Wäckers FL (2005) Suitability of (extra-)floral nectar, pollen and honeydew as insect food sources. In: Wäckers FL, van Rijn PCJ, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge, pp 17–74

    Chapter  Google Scholar 

  140. Wäckers FL, Bonifay C, Lewis WJ (2002) Conditioning of appetitive behavior in the Hymenopteran parasitoid Microplitis croceipes. Entomol Exp Appl 103:135–138

    Article  Google Scholar 

  141. Wäckers FL, van Rijn PCJ, Heimpel GE (2008) Honeydew as a food source for natural enemies: making the best of a bad meal? Biol Control 45:176–184. doi:10.1016/j.biocontrol.2008.01.007

    Article  Google Scholar 

  142. Wade MR, Hopkinson JE, Zalucki MP (2008a) Influence of food supplementation on the fitness of two biological control agents: a predatory nabid bug and a bollworm pupal parasitoid. J Pest Sci 81:99–107. doi:10.1007/s10340-007-0191-8

    Article  Google Scholar 

  143. Wade MR, Zalucki MP, Wratten SD, Robinson KA (2008b) Conservation biological control of arthropods using artificial food sprays: current status and future challenges. Biol Control 45:185–199. doi:10.1016/j.biocontrol.2007.10.024

    Article  Google Scholar 

  144. Wakefield ME, Bell HA, Gatehouse AMR (2010) Longevity and fecundity of Eulophus pennicornis, an ectoparasitoid of the tomato moth Lacanobia oleracea, is affected by nutritional state and diet quality. Agric For Entomol 12:19–27. doi:10.1111/j.1461-9563.2009.00441.x

    Article  Google Scholar 

  145. Waldbauer GP (1968) The consumption and utilization of food by insects. Adv Insect Physiol 5:229–288

    Article  Google Scholar 

  146. Wang XG, Johnson MW, Opp SB et al (2011) Honeydew and insecticide bait as competing food resources for a fruit fly and common natural enemies in the olive agroecosystem. Entomol Exp Appl 139:128–137. doi:10.1111/j.1570-7458.2011.01114.x

    Article  Google Scholar 

  147. Wanner H, Gu H, Dorn S (2006) Nutritional value of floral nectar sources for flight in the parasitoid wasp, Cotesia glomerata. Physiol Entomol 31:127–133. doi:10.1111/j.1365-3032.2006.00494.x

    Article  Google Scholar 

  148. Wheeler D (1996) The role of nourishment in oogenesis. Annu Rev Entomol 41:407–431. doi:10.1146/annurev.en.41.010196.002203

    CAS  PubMed  Article  Google Scholar 

  149. Williams L, Roane TM (2007) Nutritional ecology of a parasitic wasp: food source affects gustatory response, metabolic utilization, and survivorship. J Insect Physiol 53:1262–1275. doi:10.1016/j.jinsphys.2007.06.017

    CAS  PubMed  Article  Google Scholar 

  150. Williams L, Deschodt P, Pointurier O, Wyckhuys KAG (2015) Sugar concentration and timing of feeding affect feeding characteristics and survival of a parasitic wasp. J Insect Physiol 79:10–18. doi:10.1016/j.jinsphys.2015.05.004

    CAS  PubMed  Article  Google Scholar 

  151. Winkler K, Wäckers FL, Stingli A, Van Lenteren JC (2005) Plutella xylostella (diamondback moth) and its parasitoid Diadegma semiclausum show different gustatory and longevity responses to a range of nectar and honeydew sugars. Entomol Exp Appl 115:187–192. doi:10.1111/j.1570-7458.2005.00254.x

    CAS  Article  Google Scholar 

  152. Winkler K, Wäckers F, Bukovinszkine-Kiss G, van Lenteren J (2006) Sugar resources are vital for Diadegma semiclausum fecundity under field conditions. Basic Appl Ecol 7:133–140. doi:10.1016/j.baae.2005.06.001

    Article  Google Scholar 

  153. Winkler K, Wäckers FL, Kaufman LV et al (2009) Nectar exploitation by herbivores and their parasitoids is a function of flower species and relative humidity. Biol Control 50:299–306. doi:10.1016/j.biocontrol.2009.04.009

    Article  Google Scholar 

  154. Wratten SD, Gillespie M, Decourtye A, Mader E, Desneux N (2012) Pollinator habitat enhancement: benefits to other ecosystem services. Agric Ecosyst Environ 159:112–122

    Article  Google Scholar 

  155. Wu H, Meng L, Li B (2008) Effects of feeding frequency and sugar concentrations on lifetime reproductive success of Meteorus pulchricornis (Hymenoptera: Braconidae). Biol Control 45:353–359. doi:10.1016/j.biocontrol.2008.01.017

    CAS  Article  Google Scholar 

  156. Wyckhuys KAG, Strange-George JE, Kulhanek CA et al (2008) Sugar feeding by the aphid parasitoid Binodoxys communis: how does honeydew compare with other sugar sources? J Insect Physiol 54:481–491. doi:10.1016/j.jinsphys.2007.11.007

    CAS  PubMed  Article  Google Scholar 

  157. Zamek AL, Reynolds OL, Mansfield S et al (2013) Carbohydrate diet and reproductive performance of a fruit fly parasitoid, Diachasmimorpha tryoni. J Insect Sci 13:74. doi:10.1673/031.013.7401

    PubMed  PubMed Central  Article  Google Scholar 

  158. Zang L-S, Liu T-X (2010) Effects of food deprivation on host feeding and parasitism of whitefly parasitoids. Environ Entomol 39:912–918. doi:10.1603/EN09266

    PubMed  Article  Google Scholar 

  159. Zhang G, Zimmermann O, Hassan SA (2004) Pollen as a source of food for egg parasitoids of the genus Trichogramma (Hymenoptera: Trichogrammatidae). Biocontrol Sci Technol 14:201–209. doi:10.1080/09583150310001655648

    Article  Google Scholar 

  160. Zhang Y, Liu W, Wang W et al (2011) Lifetime gains and patterns of accumulation and mobilization of nutrients in females of the synovigenic parasitoid, Diglyphus isaea Walker (Hymenoptera: Eulophidae), as a function of diet. J Insect Physiol 57:1045–1052. doi:10.1016/j.jinsphys.2011.05.002

    CAS  PubMed  Article  Google Scholar 

Download references

Funding

G. Benelli is sponsored by PROAPI (PRAF 2015) “Valutazione della qualità organolettica del polline d’api fresco sottoposto a differenti trattamenti di condizionamento” and University of Pisa, Department of Agriculture, Food and Environment (Grant ID: COFIN2015_22). G. Giunti is funded by AGRIFOODTECH PON03 PE_00090_2 “Modelli sostenibili e nuove tecnologie per la valorizzazione delle olive e del1’olio extravergine di oliva prodotto in Calabria” (Grant ID: 14/2016/Agraria). A. Tena is partially supported by an INIA project (Grant ID: RTA2014-00067) and the Conselleria d’Agricultura, Pesca i Alimentació de la Generalitat Valenciana. N. Desneux was supported by the FP7-PEOPLE-2013-IRSES program (project APHIWEB, Grant no. 611810). Funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giovanni Benelli.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Giovanni Benelli and Giulia Giunti have contributed equally to this manuscript.

Communicated by M. Traugott.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benelli, G., Giunti, G., Tena, A. et al. The impact of adult diet on parasitoid reproductive performance. J Pest Sci 90, 807–823 (2017). https://doi.org/10.1007/s10340-017-0835-2

Download citation

Keywords

  • Biological control
  • Diptera
  • Hymenoptera
  • Host searching
  • Longevity
  • Offspring production