Journal of Pest Science

, Volume 90, Issue 2, pp 601–610 | Cite as

Evaluating trap cropping strategies for insect pest control through simulation models

  • María S. Fenoglio
  • Martín Videla
  • Juan M. Morales
Original Paper


Trap cropping is a habitat management strategy where the aim is to reduce damage to the crop of interest by mixing it with other plants that are highly attractive to insect pests. However, despite its potential, the application of this strategy has been limited mainly due to a lack of consistent effectiveness. Here, we developed an individual-based spatially explicit model that accounts for reproduction, movement and mortality of insects within a mixed crop system. This model was used to evaluate the effects of varying trap crop spatial configurations (border, stripes and patches), cover (2, 4 and 10 %) and supplemental management strategies (early harvest and pesticide application) to gain insight into the best control options offered by trap cropping. As a case study, we considered Liriomyza huidobrensis, a world known leafminer pest. Our results showed a maximum reduction of about 34 % in the pest population of the main crop when using trap plants. The supplemental management strategy had a stronger effect than other factors, with pesticide use being the best option. A sensitivity analysis showed that demographic parameters were more relevant than the behavioral ones in determining the success of the method. Our model suggests that trap cropping is only suitable for controlling L. huidobrensis if a pesticide application is added to the trap crop. Individual-based models, which are cheaper and less laborious than direct field testing, might provide an important tool to help define management schemes for the control of herbivorous pests.


Herbivores Individual-based model Movement Pest management 



We thank the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and Fondo para la Investigación Científica y Tecnológica (FONCyT) for providing the subsidy for this research (PICT 2012-No. 1846). We also would like to thank two anonymous reviewers for helpful comments on the manuscript and Dr. Paul Hobson, native speaker, for reviewing the manuscript. M.S.F., M.V. and J.M.M. belong to Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).


This study was funded by Fondo para la Investigación Científica y Tecnológica (PICT 2012-No 1846)- Agencia Nacional de Promoción Científica y Tecnológica. Ministerio de Ciencia, Tecnología e Innovación Productiva, Argentina.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.


  1. Accinelli GA, Lanzoni AL, Ramilli FR et al (2005) Trap crop: an agroecological approach to the management of Lygus rugulipennis on lettuce. Bull Insectol 58:9–14Google Scholar
  2. Altieri MA, Nicholls CI, Ponti L (2009) Crop diversification strategies for pest regulation in IPM systems. In: Radcliffe EB, Hutchison WD, Cancelado RE (eds) Integrated pest management. Cambridge Univ Press, London, pp 116–130Google Scholar
  3. Åsman K (2003) Trap cropping effect on oviposition behaviour of the leek moth Acrolepiopsis assectella and the diamondback moth Plutella xylostella. Entomol Exp Appl 2885:153–164Google Scholar
  4. Banks JE, Ekbom B (1999) Modelling herbivore movement and colonization: pest management potential of intercropping and trap cropping. Agric For Entomol 1:165–170CrossRefGoogle Scholar
  5. Bell WJ (1990) Searching behavior patterns in insects. Annu Rev Entomol 35:447–467CrossRefGoogle Scholar
  6. Cárcamo HA, Dunn R, Dosdall LM, Olfert O (2007) Managing cabbage seedpod weevil in canola using a trap crop—a commercial field scale study in western Canada. Crop Prot 26:1325–1334CrossRefGoogle Scholar
  7. Cavanagh A, Hazzard R, Adler L, Boucher J (2009) Using trap crops for control of Acalymma vittatum (Coleoptera: Chrysomelidae) reduces insecticide use in butternut squash. J Econ Entomol 102:1001–1007CrossRefGoogle Scholar
  8. Celis-Gamboa BC (2002) The life cycle of the potato (Solanum tuberosum L.): from crop physiology to genetics. PhD Thesis, Wageningen University, p 191Google Scholar
  9. Chen B, Wang J, Zhang L et al (2011) Effect of intercropping pepper with sugarcane on populations of Liriomyza huidobrensis (Diptera: Agromyzidae) and its parasitoids. Crop Prot 30:253–258CrossRefGoogle Scholar
  10. Chien CC, Chang SC (2012) Effect of insecticides on survival and fertility of Liriomyza huidobrensis (Diptera:Agromyzidae) and its parasitoid, Opius caricivorae (Hymenoptera: Braconidae). J Taiwan Agric Res 61:316–329Google Scholar
  11. Cisneros F, Mujica N (1997) The leafminer fly in potato: plant reaction and natural enemies as natural mortality factors. In: CIP program report, pp 129–140Google Scholar
  12. Correa-Ferreira BS, Moscardi F (1996) Biological control of soybean stink bugs by inoculative releases of Trissolcus basalis. Entomol Exp Appl 79:1–7CrossRefGoogle Scholar
  13. Dogramaci M, Shrefler JW, Roberts BW et al (2004) Comparison of management strategies for squash bugs (Hemiptera: Coreidae) in watermelon. J Econ Entomol 97:1999–2005CrossRefPubMedGoogle Scholar
  14. Gripenberg S, Mayhew PJ, Parnell M, Roslin T (2010) A meta-analysis of preference-performance relationships in phytophagous insects. Ecol Lett 13:383–393CrossRefPubMedGoogle Scholar
  15. Hannunen S (2005) Modelling the interplay between pest movement and the physical design of trap crop systems. Agric For Entomol 7:11–20CrossRefGoogle Scholar
  16. Hokkanen H (1991) Trap cropping in pest management. Annu Rev Entomol 36:119–138CrossRefGoogle Scholar
  17. Holden MH, Ellner SP, Lee D-H et al (2012) Designing an effective trap cropping strategy: the effects of attraction, retention and plant spatial distribution. J Appl Ecol 49:715–722Google Scholar
  18. Jones RE (1977) Movement patterns and egg distribution in cabbage butterflies. J Anim Ecol 46:195–212CrossRefGoogle Scholar
  19. Kaasik R, Kovacs G, Kaart T, Metspalu L, Williams IH, Veromann E (2014) Meligethes aeneus oviposition preferences, larval parasitism rate and species composition of parasitoids on Brassica nigra, Raphanus sativus and Eruca sativa compared with on Brassica napus. Biol Control 69:65–71CrossRefGoogle Scholar
  20. Kang L, Chen B, Wei JN, Liu TX (2009) Roles of thermal adaptation and chemical ecology in Liriomyza distribution and control. Annu Rev Entomol 54:127–145CrossRefPubMedGoogle Scholar
  21. Kovacs G, Kaasik R, Metspalu L, Williams IH, Luik A, Veromann E (2013) Could Brassica rapa, Brassica juncea and Sinapis alba facilitate the control of the cabbage seed weevil in oilseed rape crops? Biol. Control 65:124–129CrossRefGoogle Scholar
  22. Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests. Annu Rev Entomol 45:175–201CrossRefPubMedGoogle Scholar
  23. Letourneau DK, Armbrecht I, Rivera BS et al (2011) Does plant diversity benefit agroecosystems? A synthetic review. Ecol Appl 21:9–21CrossRefPubMedGoogle Scholar
  24. Lin K, Lu Y, Wan P et al (2014) Simultaneous reduction in incidence of Bemisia tabaci (Hemiptera: Aleyrodidae) and Sylepta derogata (Lepidoptera: Pyralidae) using velvetleaf, Abutilon theophrasti as a trap crop. J Pest Sci 88:49–56CrossRefGoogle Scholar
  25. Lizarraga AD (1990) Biología de la mosca minadora Liriomyza huidobrensis Blanchard (Diptera, Agromyzidae). Rev Latinoam Papa 3:30–40Google Scholar
  26. Lu YH, Wu KM, Wyckhuys KAG, Guo YY (2009) Potential of mungbean, Vigna radiatus as a trap crop for managing Apolygus lucorum (Hemiptera: Miridae) on Bt cotton. Crop Prot 28:77–81CrossRefGoogle Scholar
  27. Michaud J, Qureshi JA, Grant AK (2007) Sunflowers as a trap crop for reducing soybean losses to the stalk borer Dectes texanus (Coleoptera: Cerambycidae). Pest Manag Sci 63:903–909CrossRefPubMedGoogle Scholar
  28. Moreau TL, Isman MB (2012) Combining reduced-risk products, trap crops and yellow sticky traps for greenhouse whitefly (Trialeurodes vaporariorum) management on sweet peppers (Capsicum annum). Crop Prot 34:42–46CrossRefGoogle Scholar
  29. Mujica N, Kroschel J (2013) Pest intensity-crop loss relationships for the leafminer fly Liriomyza huidobrensis (Blanchard) in different potato (Solanum tuberosum L.) varieties. Crop Prot 47:6–16CrossRefGoogle Scholar
  30. Mujica N, Pravatiner M, Cisneros F (2000) Effectiveness of abamectin and plant-oil mixtures on eggs and larvae of the leafminer fly, Liriomyza huidobrensis Blanchard. In: CIP program report, pp 161–166Google Scholar
  31. Murphy S, LaSalle J (1999) Balancing biological control strategies in the IPM of New World invasive Liriomyza leafminers in field vegetable crops. Biocontrol News Inf 20:91–104Google Scholar
  32. Neder de Román LE, Arce de Hamity M, Quincoces de Guerra V (1993) Mecanismo de invasión de Liriomyza huidobrensis (Blanchard) (Diptera: Agromyzidae) a un cultivo de Vicia faba. Idesia 12:25–29Google Scholar
  33. Pasek JE (1988) Influence of winds and windbreaks on local dispersal of insects. Agric Ecosyst Environ 22(23):539–554CrossRefGoogle Scholar
  34. Pimentel D (2001) Overview of the use of genetically modified organisms and pesticides in agriculture. Indiana J Glob Leg Stud 9(1): 4.
  35. Potting RPJ, Perry JN, Powell W (2002) Possibilities and constraints of agroecosystem management as a pest management strategy: a simulation approach. In: Proceedings of the BCPC conference, pests and diseases, Brighton, pp 91–96Google Scholar
  36. Potting RPJ, Perry JN, Powell W (2005) Insect behavioural ecology and other factors affecting the control efficacy of agro-ecosystem diversification strategies. Ecol Modell 182:199–216CrossRefGoogle Scholar
  37. Prokopy RJ, Owens ED (1983) Visual detection of plants by herbivorous insects. Annu Rev Entomol 28:337–364CrossRefGoogle Scholar
  38. Ratnadass A, Fernandes P, Avelino J, Habib R (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sustain Dev 32:273–303CrossRefGoogle Scholar
  39. Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect-plant biology. Oxford University Press, OxfordGoogle Scholar
  40. Shelton AM, Badenes-Perez FR (2006) Concepts and applications of trap cropping in pest management. Annu Rev Entomol 51:285–308CrossRefPubMedGoogle Scholar
  41. Steck GJ (1996) Pea leafminer, Liriomyza huidobrensis (Diptera: Agromyzidae). In: Florida Department of Agriculture and Consumer Services, Entomology Circular No. 378, 1996.
  42. Sullivan GH, Weller SC, Edwards CR et al (2000) Integrated crop management strategies in snow pea: a model for achieving sustainable NTAE production in Central America. Sustainable development international, 3rd edn. ICG Publishing, London, pp 107–110Google Scholar
  43. Valladares G, Salvo A, Videla M (1999) Moscas minadoras en cultivos de Argentina. Horticult Argent 18:56–61Google Scholar
  44. Vasseur C, Joannon A, Aviron S et al (2013) The cropping systems mosaic: How does the hidden heterogeneity of agricultural landscapes drive arthropod populations? Agric Ecosyst Environ 166:3–14CrossRefGoogle Scholar
  45. Videla M, Valladares G, Salvo A (2006) A tritrophic analysis of host preference and performance in a polyphagous leafminer. Entomol Exp Appl 121:105–114CrossRefGoogle Scholar
  46. Videla M, Valladares GR, Salvo A (2012) Choosing between good and better: optimal oviposition drives host plant selection when parents and offspring agree on best resources. Oecologia 169:743–751CrossRefPubMedGoogle Scholar
  47. Vinatier F, Tixier P, Le Page C et al (2009) COSMOS, a spatially explicit model to simulate the epidemiology of Cosmopolites sordidus in banana fields. Ecol Modell 220:2244–2254CrossRefGoogle Scholar
  48. Weintraub P, Horowitz A (1995) The newest leafminer pest in Israel, Liriomyza huidobrensis. Phytoparasitica 23:177–184CrossRefGoogle Scholar
  49. Yoshimoto CM, Gressitt JL (1964) Dispersal studies on Aphididae, Agromyzidae and Cynipoidae. Pac Insects 6:525–531Google Scholar
  50. Zehnder GW, Trumble JT (1984) Intercrop movement of leafminers. Calif Agric 38:7–8Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • María S. Fenoglio
    • 1
  • Martín Videla
    • 1
  • Juan M. Morales
    • 2
  1. 1.Instituto Multidisciplinario de Biología Vegetal (IMBIV)- CONICET and Centro de Investigaciones Entomológicas de Córdoba (CIEC)- Facultad de Ciencias Exactas Físicas y NaturalesUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Laboratorio Ecotono, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA)Universidad Nacional del Comahue-CONICETRío NegroArgentina

Personalised recommendations