Journal of Pest Science

, Volume 89, Issue 3, pp 631–641 | Cite as

Accelerating research on Spotted Wing Drosophila management using genomic technologies

  • Katherine A. Murphy
  • Jessica D. West
  • Rosanna S. Kwok
  • Joanna C. Chiu


Spotted Wing Drosophila (Drosophila suzukii) is an invasive species and a serious pest of berry and soft-skinned fruit crops. The close genetic relationship between D. suzukii and other well-studied Drosophila species has provided researchers with an already extensive genetic toolkit. The reference genome and transcriptome of this insect have been annotated and made publicly available since 2013, and facilitate basic and applied research. In this review, we present a synthesis of recent research that implements next-generation sequencing and genomic technologies to better understand biological questions concerning this important pest. Much of the work performed is directly applicable to improving agricultural management practices, and includes topics such as insecticide response and resistance, invasion demographics, seasonal biology, and RNA interference technologies for pest control.


Spotted Wing Drosophila High-throughput sequencing Genomics Transcriptomics Insecticide resistance Molecular diagnostics 



We thank Frank Zalom, Kelly Hamby, Vaughn Walton, and Peter Shearer for fruitful discussions. Work on D. suzukii in our laboratory is supported by the California Cherry Board award no. CCB5400-004, the Washington Tree Fruit Research Commission award no. PR-14-103C, and the Clarence and Estelle Albaugh Endowment to JCC. Sequencing of the D. suzukii genome was supported by the USDA Specialty Crops Research Initiative grant award number 2010-51181-21167 awarded to V. Walton. JDW is a participant of the BUSP program at UC Davis, which is supported by NIH-IMSD GM56765 and HHMI grant 52005892, and a participant of BSHARP program, supported by NIGMS-MARC-U-STAR GM083894. RSK is supported by Grant Number T32-GM008799 from NIGMS-NIH. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the NIGMS or NIH.


  1. Adrion JR, Kousathanas A, Pascual M et al (2014) Drosophila suzukii: the genetic footprint of a recent, worldwide invasion. Mol Biol Evol 31:3148–3163. doi: 10.1093/molbev/msu246 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Asplen MK, Anfora G, Biondi A (2015) Invasion biology of Spotted Wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci. doi: 10.1007/s10745-006-9094-1 Google Scholar
  3. Atallah J, Teixeira L, Salazar R et al (2014) The making of a pest: the evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proc Biol Sci 281:20132840. doi: 10.1098/rspb.2013.2840 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Audsley N, Down RE (2015) G Protein coupled receptors as targets for next generation pesticides. Insect Biochem Mol Biol 67:27–37. doi: 10.1016/j.ibmb.2015.07.014 CrossRefPubMedGoogle Scholar
  5. Audsley N, Down RE, Isaac RE (2014) Genomic and peptidomic analyses of the neuropeptides from the emerging pest, Drosophila suzukii. Peptides 68:33–42. doi: 10.1016/j.peptides.2014.08.006 CrossRefPubMedGoogle Scholar
  6. Bahder BW, Bahder LD, Hamby KA et al (2015) Microsatellite variation of two Pacific coast Drosophila suzukii (Diptera: Drosophilidae) populations. Environ Entomol. doi: 10.1093/ee/nvv117 Google Scholar
  7. Baker DA, Russell S (2009) Gene expression during Drosophila melanogaster egg development before and after reproductive diapause. BMC Genom 10:242. doi: 10.1186/1471-2164-10-242 CrossRefGoogle Scholar
  8. Bean DW, Dalin P, Dudley TL (2012) Evolution of critical day length for diapause induction enables range expansion of Diorhabda carinulata, a biological control agent against tamarisk (Tamarix spp.). Evol Appl 5:511–523. doi: 10.1111/j.1752-4571.2012.00262.x CrossRefPubMedPubMedCentralGoogle Scholar
  9. Beers EH, Van Steenwyk RA, Shearer PW et al (2011) Developing Drosophila suzukii management programs for sweet cherry in the western United States. Pest Manag Sci 67:1386–1395. doi: 10.1002/ps.2279 CrossRefPubMedGoogle Scholar
  10. Boerjan B, Cardoen D, Verdonck R et al (2012) Insect omics research coming of age. Can J Zool 90:440–455. doi: 10.1139/Z2012-010 Google Scholar
  11. Bolda MP, Goodhue RE, Zalom FG (2010) Spotted Wing Drosophila: potential economic impact of a newly established pest. Agric Resour Econ Updat Univ Calif Giannini Found 13:5–8Google Scholar
  12. Bradshaw WE, Holzapfel CM (2010) What season is it anyway? Circadian tracking vs. photoperiodic anticipation in insects. J Biol Rhythms 25:155–165. doi: 10.1177/0748730410365656 CrossRefPubMedGoogle Scholar
  13. Bruck DJ, Bolda M, Tanigoshi L et al (2011) Laboratory and field comparisons of insecticides to reduce infestation of Drosophila suzukii in berry crops. Pest Manag Sci 67:1375–1385. doi: 10.1002/ps.2242 CrossRefPubMedGoogle Scholar
  14. Burand JP, Hunter WB (2013) RNAi: future in insect management. J Invertebr Pathol. doi: 10.1016/j.jip.2012.07.012 PubMedGoogle Scholar
  15. Casida JE, Durkin KA (2013) Neuroactive insecticides: targets, selectivity, resistance, and secondary effects. Annu Rev Entomol 58:99–117. doi: 10.1146/annurev-ento-120811-153645 CrossRefPubMedGoogle Scholar
  16. Chiu JC, Lee EK, Egan MG et al (2006) OrthologID: automation of genome-scale ortholog identification within a parsimony framework. Bioinformatics 22:699–707CrossRefPubMedGoogle Scholar
  17. Chiu JC, Jiang XT, Zhao L et al (2013) Genome of Drosophila suzukii, the Spotted Wing Drosophila. G3—Genes Genomes Genet 3:2257–2271. doi: 10.1534/g3.113.008185 Google Scholar
  18. Chown SL, Slabber S, McGeoch MA et al (2007) Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. Proc R Soc B Biol Sci 274:2531–2537. doi: 10.1098/rspb.2007.0772 CrossRefGoogle Scholar
  19. Copeland JM, Cho J, Lo T et al (2009) Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr Biol 19:1591–1598. doi: 10.1016/j.cub.2009.08.016 CrossRefPubMedGoogle Scholar
  20. Coy MR, Sanscrainte ND, Chalaire KC et al (2012) Gene silencing in adult Aedes aegypti mosquitoes through oral delivery of double-stranded RNA. J Appl Entomol 136:741–748. doi: 10.1111/j.1439-0418.2012.01713.x CrossRefGoogle Scholar
  21. Daborn PJ, Yen JL, Bogwitz MR et al (2002) A single p450 allele associated with insecticide resistance in Drosophila. Science 297:2253–2256. doi: 10.1126/science.1074170 CrossRefPubMedGoogle Scholar
  22. Dermauw W, Van Leeuwen T (2014) The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. Insect Biochem Mol Biol 45:89–110. doi: 10.1016/j.ibmb.2013.11.001 CrossRefPubMedGoogle Scholar
  23. Dhami MK, Kumarasinghe L (2014) A HRM real-time PCR assay for rapid and specific identification of the emerging pest Spotted-Wing Drosophila (Drosophila suzukii). PLoS ONE. doi: 10.1371/journal.pone.0098934 PubMedPubMedCentralGoogle Scholar
  24. Dong K, Du Y, Rinkevich F et al (2014) Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochem Mol Biol 50:1–17. doi: 10.1016/j.ibmb.2014.03.012 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Dreves A, Walton V, Fisher G (2009) A new pest attacking healthy ripening fruit in Oregon. Oregon Univ Serv EM 8991. pp 1–6Google Scholar
  26. Epis S, Porretta D, Mastrantonio V et al (2014) ABC transporters are involved in defense against permethrin insecticide in the malaria vector Anopheles stephensi. Parasit Vectors 7:349. doi: 10.1186/1756-3305-7-349 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Fitches E, Audsley N, Gatehouse JA, Edwards JP (2002) Fusion proteins containing neuropeptides as novel insect control agents: snowdrop lectin delivers fused allatostatin to insect haemolymph following oral ingestion. Insect Biochem Mol Biol 32:1653–1661. doi: 10.1016/S0965-1748(02)00105-4 CrossRefPubMedGoogle Scholar
  28. Fleischmann RD, Adams MD, White O et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512CrossRefPubMedGoogle Scholar
  29. Fraimout A, Loiseau A, Price DK et al (2015) New set of microsatellite markers for the spotted-wing Drosophila suzukii (Diptera: Drosophilidae): a promising molecular tool for inferring the invasion history of this major insect pest. Eur J Entomol 112:1–5. doi: 10.14411/eje.2015.079 Google Scholar
  30. Gahan LJ, Pauchet Y, Vogel H, Heckel DG (2010) An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genet 6:1–11. doi: 10.1371/journal.pgen.1001248 CrossRefGoogle Scholar
  31. Garland SL (2013) Are GPCRs still a source of new targets? J Biomol Screen 18:947–966. doi: 10.1177/1087057113498418 CrossRefPubMedGoogle Scholar
  32. Hamby KA, Kwok RS, Zalom FG, Chiu JC (2013) Integrating circadian activity and gene expression profiles to predict chronotoxicity of Drosophila suzukii response to insecticides. PLoS ONE. doi: 10.1371/journal.pone.0068472 Google Scholar
  33. Haviland DR, Beers EH (2012) Chemical control programs for Drosophila suzukii that comply with international limitations on pesticide residues for exported sweet cherries. J Integr Pest Manag 3:1–6. doi: 10.1603/IPM11034 CrossRefGoogle Scholar
  34. Kim SHS, Tripodi AD, Johnson DT, Szalanski AL (2014) Molecular diagnostics of Drosophila suzukii (Diptera: Drosophilidae) using PCR-RFLP. J Econ Entomol 107:1292–1294CrossRefPubMedGoogle Scholar
  35. Lee Y, Marsden CD, Norris LC et al (2013) Spatiotemporal dynamics of gene flow and hybrid fitness between the M and S forms of the malaria mosquito, Anopheles gambiae. Proc Natl Acad Sci USA 110:19854–19859. doi: 10.1073/pnas.1316851110 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Li F, Scott MJ (2015) CRISPR/Cas9-mediated mutagenesis of the white and Sex lethal loci in the invasive pest, Drosophila suzukii. Biochem Biophys Res Commun. doi: 10.1016/j.bbrc.2015.12.081 Google Scholar
  37. Li X, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52:231–253. doi: 10.1146/annurev.ento.51.110104.151104 CrossRefPubMedGoogle Scholar
  38. Li B, Fillmore N, Bai Y et al (2014) Evaluation of de novo transcriptome assemblies from RNA-Seq data. Genome Biol 15:553. doi: 10.1101/006338 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Li H, Khajuria C, Rangasamy M et al (2015) Long dsRNA but not siRNA initiates RNAi in western corn rootworm larvae and adults. J Appl Entomol 139:432–445. doi: 10.1111/jen.12224 CrossRefGoogle Scholar
  40. Liu GE (2009) Applications and case studies of the next-generation sequencing technologies in food, nutrition and agriculture. Recent Pat Food Nutr Agric 1:75–79CrossRefPubMedGoogle Scholar
  41. Maeda S (1989) Increased insecticidal effect by a recombinant baculovirus carrying a synthetic diuretic hormone gene. Biochem Biophys Res Commun 165:117. doi: 10.1007/s13398-014-0173-7.2 CrossRefGoogle Scholar
  42. Majercak J, Sidote D, Hardin PE, Edery I (1999) How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron 24:219–230. doi: 10.1016/S0896-6273(00)80834-X CrossRefPubMedGoogle Scholar
  43. McDonald MJ, Rosbash M (2001) Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107:567–578. doi: 10.1016/S0092-8674(01)00545-1 CrossRefPubMedGoogle Scholar
  44. Meuti ME, Denlinger DL (2013) Evolutionary links between circadian clocks and photoperiodic diapause in insects. Integr Comp Biol 53:131–143. doi: 10.1093/icb/ict023 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Murphy KA, Unruh TR, Zhou LM et al (2015) Using comparative genomics to develop a molecular diagnostic for the identification of an emerging pest Drosophila suzukii. Bull Entomol Res 105:364–372. doi: 10.1017/S0007485315000218 CrossRefPubMedGoogle Scholar
  46. Nylin S (2013) Induction of diapause and seasonal morphs in butterflies and other insects: knowns, unknowns and the challenge of integration. Physiol Entomol 38:96–104. doi: 10.1111/phen.12014 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Obbard DJ, Maclennan J, Kim KW et al (2012) Estimating divergence dates and substitution rates in the Drosophila phylogeny. Mol Biol Evol 28:3459–3473CrossRefGoogle Scholar
  48. Ometto L, Cestaro A, Ramasamy S et al (2013) Linking genomics and ecology to investigate the complex evolution of an invasive Drosophila pest. Genome Biol Evol 5:745–757. doi: 10.1093/gbe/evt034 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Saunders DS, Henrich VC, Gilbert LI (1989) Induction of diapause in Drosophila melanogaster: photoperiodic regulation and the impact of arrhythmic clock mutations on time measurement. Proc Natl Acad Sci USA 86:3748–3752. doi: 10.1073/pnas.86.10.3748 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Schetelig MF, Handler AM (2013) Germline transformation of the spotted wing drosophilid, Drosophila suzukii, with a piggyBac transposon vector. Genetica 141:189–193. doi: 10.1007/s10709-013-9717-6 CrossRefPubMedGoogle Scholar
  51. Scott JG (1999) Cytochromes P450 and insecticide resistance. Insect Biochem Mol Biol 29:757–777. doi: 10.1016/S0965-1748(99)00038-7 CrossRefPubMedGoogle Scholar
  52. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145. doi: 10.1038/nbt1486 CrossRefPubMedGoogle Scholar
  53. Teets NM, Denlinger DL (2013) Physiological mechanisms of seasonal and rapid cold-hardening in insects. Physiol Entomol 38:105–116. doi: 10.1111/phen.12019 CrossRefGoogle Scholar
  54. Ulrich J, Dao VA, Majumdar U et al (2015) Large scale RNAi screen in Tribolium reveals novel target genes for pest control and the proteasome as prime target. BMC Genom 16:674. doi: 10.1186/s12864-015-1880-y CrossRefGoogle Scholar
  55. Urbanski J, Mogi M, O’Donnell D et al (2012) Rapid adaptive evolution of photoperiodic response during invasion and range expansion across a climatic gradient. Am Nat 179:490–500. doi: 10.1086/664709 CrossRefPubMedGoogle Scholar
  56. Van Timmeren S, Isaacs R (2013) Control of Spotted Wing Drosophila, Drosophila suzukii, by specific insecticides and by conventional and organic crop protection programs. Crop Prot 54:126–133. doi: 10.1016/j.cropro.2013.08.003 CrossRefGoogle Scholar
  57. Walsh DB, Bolda MP, Goodhue RE et al (2011) Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. J Integr Pest Manag 2:1–7. doi: 10.1603/IPM10010 CrossRefGoogle Scholar
  58. Zhang J, Khan SA, Hasse C, Ruf S (2015) Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 347:991–994CrossRefPubMedGoogle Scholar
  59. Zotti MJ, Smagghe G (2015) RNAi technology for insect management and protection of beneficial insects from diseases: lessons, challenges and risk assessments. Neotrop Entomol. doi: 10.1007/s13744-015-0291-8 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Katherine A. Murphy
    • 1
  • Jessica D. West
    • 1
  • Rosanna S. Kwok
    • 1
  • Joanna C. Chiu
    • 1
  1. 1.Department of Entomology and NematologyUniversity of California, DavisDavisUSA

Personalised recommendations