Skip to main content
Log in

Foraging wireworms are attracted to root-produced volatile aldehydes

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Soil-dwelling insects are known to react to chemical cues they encounter in the rhizosphere. Whether wireworms (Coleoptera, Elateridae) use root-emitted volatile organic chemicals to localize their host plant remains, however, poorly understood. Here, we aimed at identifying chemical cues released by barley roots that attract Agriotes sordidus. In a first behavioral experiment, we assessed the ability of wireworms to orient towards live barley roots, using dual-choice olfactometers suitable for belowground insects. Then, we collected the volatile organic compounds (VOC) produced by barley roots using a dynamic head-space sampling approach. VOC were quantified and identified using gas chromatography—mass spectrometry (GC–MS). The odorant blend is composed of four aldehydes, namely hexanal, (E)-hex-2-enal, (E)-non-2-enal, and (E,Z)-nona-2,6-dienal. In a second set of dual-choice bioassays, wireworms were attracted towards a synthetic blend of these four major compounds. However, the synthetic blend was not as attractive as live roots, which is partially explained by the absence of CO2, commonly known as a strong attractant for soil-dwelling insects. While CO2 indicates the presence of living material in the vicinity, we hypothesize that additional VOC inform about the plant suitability. A better understanding of these belowground signals would contribute to the development of new integrated control strategies against wireworms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Agelopoulos N, Birkett MA, Hick AJ et al (1999) Exploiting semiochemicals in insect control. Pestic Sci 55(3):225–235

    Article  CAS  Google Scholar 

  • Ansari MA, Shah FA, Butt TM (2008) Combined use of entomopathogenic nematodes and Metarhizium anisopliae as a new approach for black vine weevil, Otiorhynchus sulcatus, control. Entomol Exp Appl 129(3):340–347

    Article  Google Scholar 

  • Ansari MA, Evans M, Butt TM (2009) Identification of pathogenic strains of entomopathogenic nematodes and fungi for wireworm control. Crop Prot 28(3):269–272

    Article  Google Scholar 

  • Barsics F, Latine R, Gfeller A et al (2012) Do root-emitted volatile organic compounds attract wireworms. Commun Agric Appl Biol Sci 77(4):561–565

    CAS  PubMed  Google Scholar 

  • Barsics F, Haubruge E, Verheggen FJ (2013) Wireworms’ management: an overview of the existing methods, with particular regards to Agriotes spp. (Coleoptera: Elateridae). Insects 4(1):117–152

    Article  PubMed  PubMed Central  Google Scholar 

  • Barsics F, Haubruge E, Francis F, Verheggen FJ (2014) The role of olfaction in wireworms: a review on their foraging behavior and sensory apparatus. Biotechnol Agron Société Environ 18(4):524–535

    Google Scholar 

  • Chaton PF, Lemperiere G, Tissut M, Ravanel P (2008) Biological traits and feeding capacity of Agriotes larvae (Coleoptera: Elateridae): a trial of seed coating to control larval populations with the insecticide fipronil. Pestic Biochem Physiol 90(2):97–105

    Article  CAS  Google Scholar 

  • Cocquempot C, Martinez M, Courbon R et al (1999) Nouvelles données sur l’identification des larves de taupins (Coleoptera : Elateridae) : une aide à la connaissance biologique et à la cartographie des espèces nuisibles. In: ANPP—5ème conférence internationale sur les ravageurs en agriculture. Montpellier, 7–8–9 décembre 1999, pp 477–486

  • Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Ann Rev Entomol 52:375–400

    Article  CAS  Google Scholar 

  • D’Alessandro M, Erb M, Ton J et al (2013) Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ. doi:10.1111/pce.12220

    PubMed  PubMed Central  Google Scholar 

  • Delory BM, Delaplace P, Fauconnier M-L, du Jardin P (2016) Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions. InPress, Plant and Soil

    Google Scholar 

  • Doane JF, Klingler J (1978) Location of CO2-receptive sensilla on larvae of wireworms Agriotes lineatusobscurus and Limonus californicus. Ann Entomol Soc Am 71(3):357–363

    Article  Google Scholar 

  • Doane JF, Lee YW, Klingler J, Westcott ND (1975) Orientation response of Ctenicera destructor and other wireworms (Coleoptera: Elateridae) to germinating grain and to carbon dioxide. Can Entomol 107(12):1233–1252

    Article  Google Scholar 

  • Eilers EJ, Talarico G, Hansson BS et al (2012) Sensing the underground–ultrastructure and function of sensory organs in root-feeding Melolontha melolontha (Coleoptera: Scarabaeinae) larvae. PLoS ONE 7:e41357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eilers EJ, Pauls G, Rillig MC et al (2015) Novel set-up for low-disturbance sampling of volatile and non-volatile compounds from plant roots. J Chem Ecol 41(3):253–266. doi:10.1007/s10886-015-0559-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erb M, Foresti N, Turlings TCJ (2010) A tritrophic signal that attracts parasitoids to host-damaged plants withstands disruption by non-host herbivores. BMC Plant Biol 10:247. doi:10.1186/1471-2229-10-247

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferreira V, Aznar M, López R, Cacho J (2001) Quantitative gas chromatography–olfactometry carried out at different dilutions of an extract. Key differences in the odor profiles of four high-quality spanish aged red wines. J Agric Food Chem 49(10):4818–4824

    Article  CAS  PubMed  Google Scholar 

  • Furlan L (2004) The biology of Agriotes sordidus Illiger (Col., Elateridae). J Appl Entomol 128(9–10):696–706

    Article  Google Scholar 

  • Furlan L (2014) IPM thresholds for Agriotes wireworm species in maize in Southern Europe. J Pest Sci 87(4):609–617. doi:10.1007/s10340-014-0583-5

    Article  Google Scholar 

  • Gfeller A, Laloux M, Barsics F et al (2013) Characterization of volatile organic compounds emitted by barley (Hordeum vulgare l.) roots and their attractiveness to wireworms. J Chem Ecol 39(8):1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Hemerik L, de Fluiter R (1999) No preference of the wireworm Agriotes lineatus (L.), for four grass species. Proc Exp Appl Entomol Neth Entomol Soc 10:175–181

    Google Scholar 

  • Hemerik L, Gort G, Brussaard L (2003) Food preference of wireworms analyzed with multinomial Logit models. J Insect Behav 16(5):647–665

    Article  Google Scholar 

  • Hiltpold I, Baroni M, Toepfer S et al (2010) Selection of entomopathogenic nematodes for enhanced responsiveness to a volatile root signal helps to control a major root pest. J Exp Biol 213(14):2417–2423. doi:10.1242/jeb.041301

    Article  CAS  PubMed  Google Scholar 

  • Hiltpold I, Bernklau E, Bjostad LB et al (2013) Nature, evolution and characterisation of rhizospheric chemical exudates affecting root herbivores. In: Johnson SN, Hiltpold I, Turlings TCJ (eds) Advances in insect physiology, vol 45. Academic, Oxford, pp 97–157

  • Högnadóttir Á, Rouseff RL (2003) Identification of aroma active compounds in orange essence oil using gas chromatography–olfactometry and gas chromatography–mass spectrometry. J Chromatogr A 998(1):201–211

    Article  PubMed  Google Scholar 

  • Johnson SN, Nielsen UN (2012) Foraging in the dark—chemically mediated host plant location by belowground insect herbivores. J Chem Ecol 38(6):604–614

    Article  CAS  PubMed  Google Scholar 

  • Kabaluk JT, Ericsson JD (2007a) Metarhizium anisopliae seed treatment increases yield of field corn when applied for wireworm control. Agron J 99(5):1377–1381

    Article  Google Scholar 

  • Kabaluk JT, Ericsson JD (2007b) Environmental and behavioral constraints on the infection of wireworms by Metarhizium anisopliae. Environ Entomol 36(6):1415–1420

    Article  PubMed  Google Scholar 

  • Kabaluk JT, Lafontaine JP, Borden JH (2015) An attract and kill tactic for click beetles based on Metarhizium brunneum and a new formulation of sex pheromone. J Pest Sci 88(4):707–716. doi:10.1007/s10340-015-0661-3

    Article  Google Scholar 

  • Pic M, Pierre E, Martinez M, et al (2008) Les taupins du genre Agriotes démasqués par leurs empreintes génétiques. In: AFPP - 8ème conférence internationale sur les ravageurs en agriculture. Montpellier 22–23 octobre 2008, pp 23–32

  • Rasmann S, Erwin AC, Halitschke R, Agrawal AA (2011) Direct and indirect root defences of milkweed (Asclepias syriaca): trophic cascades, trade-offs and novel methods for studying subterranean herbivory. J Ecol 99(1):16–25. doi:10.1111/j.1365-2745.2010.01713.x

    Article  CAS  Google Scholar 

  • Ruther J (2000) Retention index database for identification of general green leaf volatiles in plants by coupled capillary gas chromatography-mass spectrometry. J Chromatogr A 890(2):313–319

    Article  CAS  PubMed  Google Scholar 

  • Schallhart N, Tusch MJ, Staudacher K et al (2011) Stable isotope analysis reveals whether soil-living elaterid larvae move between agricultural crops. Soil Biol Biochem 43(7):1612–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schallhart N, Tusch MJ, Wallinger C et al (2012) Effects of plant identity and diversity on the dietary choice of a soil-living insect herbivore. Ecology 93(12):2650–2657. doi:10.1890/11-2067.1

    Article  PubMed  Google Scholar 

  • Staudacher K, Schallhart N, Thalinger B et al (2013) Plant diversity affects behavior of generalist root herbivores, reduces crop damage, and enhances crop yield. Ecol Appl 23(5):1135–1145. doi:10.1890/13-0018.1

    Article  PubMed  Google Scholar 

  • Svensson GP, Larsson MC, Hedin J (2004) Attraction of the larval predator Elater ferrugineus to the sex pheromone of its prey, Osmoderma eremita, and its implication for conservation biology. J Chem Ecol 30(2):353–363

    Article  CAS  PubMed  Google Scholar 

  • Traugott M, Benefer CM, Blackshaw RP et al (2015) Biology, ecology, and control of elaterid beetles in agricultural land. Annu Rev Entomol 60:313–334. doi:10.1146/annurev-ento-010814-021035

    Article  CAS  PubMed  Google Scholar 

  • Valim MF, Rouseff RL, Lin J (2003) Gas chromatographic-olfactometric characterization of aroma compounds in two types of cashew apple nectar. J Agric Food Chem 51(4):1010–1015

    Article  CAS  PubMed  Google Scholar 

  • van Den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr A 11(C):463–471

    Article  Google Scholar 

  • Vernon RS, Kabaluk T, Behringer A (2000) Movement of Agriotes obscurus (Coleoptera: Elateridae) in strawberry (Rosaceae) plantings with wheat (Gramineae) as a trap crop. Can Entomol 132(2):231–241

    Article  Google Scholar 

  • von Mérey GE, Veyrat N, Lange ED et al (2012) Minor effects of two elicitors of insect and pathogen resistance on volatile emissions and parasitism of Spodoptera frugiperda in Mexican maize fields. Biol Control 60(1):7–15

    Article  Google Scholar 

  • Wallinger C, Staudacher K, Schallhart N et al (2014) How generalist herbivores exploit belowground plant diversity in temperate grasslands. Mol Ecol 23(15):3826–3837. doi:10.1111/mec.12579

    Article  PubMed  Google Scholar 

  • Weddle PW, Welter SC, Thomson D (2009) History of IPM in California pears—50 years of pesticide use and the transition to biologically intensive IPM. Pest Manag Sci 65(12):1287–1292

    Article  CAS  PubMed  Google Scholar 

  • Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest management. J Chem Ecol 36(1):80–100

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Laurent Maunas and Jean-Baptiste Thibord for collaboration on wireworm supply, to Thomas Bertrand, Pierre Patrick Eloundou, Franck Michels, and Danny Trisman for technical support, and to Gembloux Agro-Bio Tech for supporting the RHIZOVOL project. Fanny Barsics was supported by a FRIA grant and a WBI.out post-doctoral scholarship. Benjamin M. Delory was supported by an F.R.S-FNRS grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanny Barsics.

Additional information

Communicated by M. Traugott.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barsics, F., Delory, B.M., Delaplace, P. et al. Foraging wireworms are attracted to root-produced volatile aldehydes. J Pest Sci 90, 69–76 (2017). https://doi.org/10.1007/s10340-016-0734-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-016-0734-y

Keywords

Profiles

  1. Marie-Laure Fauconnier