Skip to main content

Mating disruption of a grapevine pest using mechanical vibrations: from laboratory to the field

Abstract

Mating disruption using mechanical vibrations is a novel idea for integrated pest management of insect pests. We present results of research on using artificial vibrational noise to prevent mate recognition and localization mediated by vibrational signals in the grapevine pest Scaphoideus titanus. Building on the proof of concept published previously, mating trials were set up in laboratory to determine the amplitude threshold for playback efficacy and reveal the mechanism of its function, while field trials were performed to validate this threshold and explore the possibility of reducing energy use by exploiting the diel pattern of this species’ mating activity. The threshold obtained in laboratory trials—15 μm/s peak amplitude—was confirmed by measurements of attenuation and insect mating in field cages at successive distances from the source. We also discovered that shutting off the disruptive noise between 1000 and 1800 h did not reduce efficacy of the method in the field, allowing energy saving in this period. The noise had an all-or-nothing effect on S. titanus mating behaviour, and we were unable to ascertain the exact mechanism of the communication breakdown, but the approach appears robust enough to merit large-scale testing in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Barth FG, Bleckmann H, Bohnenberger J, Seyfarth E-A (1988) Spiders of the genus Cupiennius Simon 1891 (Araneae, Ctenidae) II. On the vibratory environment of a wandering spider. Oecologia 77:194–201

    Article  Google Scholar 

  • Beck SD (1980) Insect photoperiodism, 2nd edn. Academic Press, New York

    Google Scholar 

  • Bertin S, Guglielmino CR, Karam N, Gomulski LM, Malacrida AR, Gasperi G (2007) Diffusion of the Nearctic leafhopper Scaphoideus titanus Ball in Europe: a consequence of human trading activity. Genetica 131:275–285

    CAS  Article  PubMed  Google Scholar 

  • Brumm H, Slabbekoorn H (2005) Acoustic communication in noise. Adv Stud Behav 35:151–209

    Article  Google Scholar 

  • Cardé RT (1990) Principles of mating disruption. In: Ridgway RL, Silverstein RM, Inscoe MN (eds) Behavior-modifying chemicals for insect management. Marcel Dekker, Inc., New York, pp 47–71

    Google Scholar 

  • Casas J, Magal C (2006) Mutual eavesdropping through vibrations in a host-parasitoid interaction: from plant biomechanics to behavioural ecology. In: Claridge MF, Drosopoulos S (eds) Insect sounds and communication: physiology, behaviour, ecology and evolution. Taylor & Francis, Boca Raton, pp 263–271

    Google Scholar 

  • Casas J, Bacher S, Tautz J, Meyhofer R, Pierre D (1998) Leaf vibrations and air movements in a leafminer–parasitoid system. Biol Control 11:147–153

    Article  Google Scholar 

  • Caudwell A, Kuszala C, Bachelier JC, Larrue J (1970) Transmission de la Flavescence dorée de la vigne aux plantes herbacées par l’allongement du temps d’utilisation de la cicadelle Scaphoideus littoralis BALL et l’étude de sa survie sur un grand nombre d’espèces végétales. Ann Pytopathol 2:415–428

    Google Scholar 

  • Chehab EW, Eich E, Braam J (2009) Thigmomorphogenesis: a complex plant response to mechano-stimulation. J Exp Bot 60(1):43–56

    CAS  Article  PubMed  Google Scholar 

  • Chuche J, Thiéry D (2009) Cold winter temperatures condition the egg-hatching dynamics of a grape disease vector. Naturwissenschaften 96:827–834

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Chuche J, Thiéry D (2014) Biology and ecology of the Flavescence dorée vector Scaphoideus titanus: a review. Agron Sustain Dev 34(2):381–403

    Article  Google Scholar 

  • Claridge MF (1985) Acoustic signals in the Homoptera: behavior, taxonomy, and evolution. Ann Rev Entomol 30:297–317

    Article  Google Scholar 

  • Cocroft RB, Rodríguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55(4):323–334

    Article  Google Scholar 

  • Čokl A, Millar JG (2009) Manipulation of insect signaling for monitoring and control of pest insects. In: Ishaaya I, Horowitz AR (eds) Biorational control of arthropod pests. Springer, Dordrecht, pp 279–316

    Google Scholar 

  • Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400

    CAS  Article  PubMed  Google Scholar 

  • Eguagie WE (1974) An analysis of movement of adult Tingis ampliata H.-S. (Heteroptera: Tingidae) in a natural habitat. J Anim Ecol 43(2):521–535

    Article  Google Scholar 

  • Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M, Mazzoni V (2011) Inter-plant vibrational communication in a leafhopper insect. PLoS ONE 6(5):e19692

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Eriksson A, Anfora G, Lucchi A, Lanzo F, Virant-Doberlet M, Mazzoni V (2012) Exploitation of insect vibrational signals reveals a new method of pest management. PLoS ONE 7(3):e32945

    Article  Google Scholar 

  • Foster SP, Harris MO (1997) Behavioral manipulation methods for insect pest-management. Annu Rev Entomol 42:123–146

    CAS  Article  PubMed  Google Scholar 

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. University of Chicago Press, Chicago

    Google Scholar 

  • Hofstetter RW, Dunn DD, McGuire R, Potter KA (2014) Using acoustic technology to reduce bark beetle reproduction. Pest Manag Sci 70(1):24–27

    CAS  Article  PubMed  Google Scholar 

  • Ichikawa T (1982) Density-related changes in male-male competitive behaviour in the rice brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). App Entomol Zool 17(4):439–452

    Google Scholar 

  • Ioriatti C, Anfora G, Tasin M, De Cristofaro A, Witzgall P, Lucchi A (2011) Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). J Econ Entomol 104(4):1125–1137

    CAS  Article  PubMed  Google Scholar 

  • Lessio F, Alma A (2004) Seasonal and daily movement of Scaphoideus titanus Ball (Homoptera: Cicadellidae). Environ Entomol 33(6):1689–1694

    Article  Google Scholar 

  • MacDonald PL, Gardner RC (2000) Type I error rate comparisons of post hoc procedures for I x J Chi square tables. Educ Psychol Meas 60:735–754

    Article  Google Scholar 

  • Mankin RW (2012) Applications of acoustics in insect pest management. CAB Rev 7(1):1–7

    Article  Google Scholar 

  • Mazzoni V, Prešern J, Lucchi A, Virant-Doberlet M (2009a) Reproductive strategy of the Nearctic leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). Bull Entomol Res 99(4):401–413

    Article  PubMed  Google Scholar 

  • Mazzoni V, Lucchi A, Čokl A, Prešern J, Virant-Doberlet M (2009b) Disruption of the reproductive behaviour of Scaphoideus titanus by playback of vibrational signals. Entomol Exp Appl 133:174–185

    Article  Google Scholar 

  • Mazzoni V, Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M (2014) Active space and the role of amplitude in plant-borne vibrational communication. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp 125–146

    Google Scholar 

  • McNett GD, Luan LH, Cocroft RB (2010) Wind-induced noise alters signaler and receiver behavior in vibrational communication. Behav Ecol Sociobiol 64:2043–2051

    Article  Google Scholar 

  • Miller JR, Gut LJ, de Lame FM, Stelinski LL (2006) Differentiation of competitive vs. non-competitive mechanisms mediating disruption of moth sexual communication by point sources of sex pheromone (Part 1): theory. J Chem Ecol 32:2089–2114

    CAS  Article  PubMed  Google Scholar 

  • Papura D, Burban C, van Helden M, Giresse X, Nusillard B, Guillemaud T, Kerdelhué C (2012) Microsatellite and mitochondrial data provide evidence for a single major introduction for the Neartic leafhopper Scaphoideus titanus in Europe. PLoS ONE 7:e36882

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Polajnar J, Eriksson A, Rossi Staconi MV, Lucchi A, Anfora G, Virant-Doberlet M, Mazzoni V (2014) The process of pair formation mediated by substrate-borne vibrations in a small insect. Behav Proc 107:68–78

    Article  Google Scholar 

  • Polajnar J, Eriksson A, Lucchi A, Anfora G, Virant-Doberlet M, Mazzoni V (2015) Manipulating behaviour with substrate-borne vibrations: potential for insect pest control. Pest Manag Sci 71(1):15–23

    CAS  Article  PubMed  Google Scholar 

  • Sanders CJ (1997) Mechanisms of mating disruption in moths. In: Cardé RT, Minks AK (eds) Insect pheromone research IV: new directions. Springer, New York, pp 333–346

    Chapter  Google Scholar 

  • Saxena KN, Kumar H (1980) Interruption of acoustic communication and mating in a leafhopper and a planthopper by aerial sound vibrations picked up by plants. Experientia 36:933–936

    Article  Google Scholar 

  • Tishechkin DY (2007) Background noises in vibratory communication channels of Homoptera (Cicadinea and Psyllinea). Russ Entomol J 16:39–46

    Google Scholar 

  • Tishechkin DY (2013) Vibrational background noise in herbaceous plants and its impact on acoustic communication of small Auchenorrhyncha and Psyllinea (Homoptera). Entomol Rev 93(5):548–558

    Article  Google Scholar 

  • Vélez MJ, Brockmann J (2006) Seasonal variation in selection on male calling song in the field cricket, Gryllus rubens. Anim Behav 72(2):439–448

    Article  Google Scholar 

  • Vicens N, Bosch J (2000) Weather-dependent pollinator activity in an apple orchard with special reference to Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae and Apidae). Environ Entomol 29(3):413–420

    Article  Google Scholar 

  • Vidano C (1964) Scoperta in Italia dello Scaphoideus littoralis Ball cicalina americana collegata alla “Flavescence dorée” della Vite. Ital Agric 101:1031–1049

    Google Scholar 

  • Vidano C (1966) Scoperta della ecologia ampelofila del cicadellide Scaphoideus littoralis Ball nella regione neartica originaria. Ann Fac Sci Agr Univ Torino 3:297–302

    Google Scholar 

  • Virant-Doberlet M, Mazzoni V, de Groot M, Polajnar J, Lucchi A, Symondson WOC, Čokl A (2014) Vibrational communication networks: eavesdropping and biotic noise. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp 93–123

    Google Scholar 

  • Walker TJ (1988) Acoustic traps for agriculturally important insects. Fla Entomol 71:484–492

    Article  Google Scholar 

  • Witzgall P, Stelinski L, Gut L, Thomson D (2008) Codling moth management and chemical ecology. Annu Rev Entomol 53:503–522

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Luca Nicoletti and Dr. Santosh Revadi for technical help with insect rearing and field trials, and Dr. Rodrigo Krugner for critical reading of the manuscript. This research was supported by the European Union Seventh Framework Programme (FP7/2007-2013) under the Grant agreement no. 265865.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Mazzoni.

Additional information

Communicated by D. C. Weber.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Polajnar, J., Eriksson, A., Virant-Doberlet, M. et al. Mating disruption of a grapevine pest using mechanical vibrations: from laboratory to the field. J Pest Sci 89, 909–921 (2016). https://doi.org/10.1007/s10340-015-0726-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-015-0726-3

Keywords

  • Scaphoideus titanus
  • Integrated pest management
  • Vibrational noise
  • Mating disruption
  • Hemiptera
  • Vineyard