Journal of Pest Science

, Volume 88, Issue 2, pp 281–287 | Cite as

Contrasting effects of shade level and altitude on two important coffee pests

  • Mattias Jonsson
  • Ijala Anthony Raphael
  • Barbara Ekbom
  • Samuel Kyamanywa
  • Jeninah Karungi
Original Paper

Abstract

The diversity and abundance of natural enemies of insect pests is often higher in agroforestry plantations than in sun-exposed monocultures, and it is often assumed that this will lead to improved pest suppression. The effect that incorporating trees in cropping systems will have on pest populations, however, also depends on the habitat requirements of the pests themselves. In Eastern Uganda, we studied how shade level (full >50 trees per acre, moderate 21–50 trees per acre, and low 0–20 trees per acre) and altitude (high 1,717–1,840 m.a.s.l. and low 1,511–1,605 m.a.s.l.) influenced the abundance of the white stem borer Monochamus leuconotus and the coffee berry borer Hypothenemus hampei. We found that the effect of shade trees differed between the two pest species. The coffee berry borer was more common on sun-exposed plantations, whereas the white stem borer was more common in shaded plantations. Furthermore, the effect of shade level on the white stem borer depended on altitude, with the differences between shade levels being most pronounced in plantations at low altitudes. This implies that the impact of agroforestry on pest regulation both under current conditions and in a global warming scenario will be highly context dependent; it will depend on the identity of the most important pests in the area, and on environmental factors such as altitude.

Keywords

Agroforestry Climate change Hypothenemus hampei Monochamus leuconotus Sun-exposure Uganda 

References

  1. Avelino J, Romero-Guardiá A, Cruz-Cuellar HF, deClerck FAJ (2012) Landscape context and scale differentially impact coffee leaf rust, coffee berry borer, and coffee root-knot nematodes. Ecol Appl 22:584–596CrossRefPubMedGoogle Scholar
  2. Beer J, Muschler R, Kass D, Somarriba E (1998) Shade management in coffee and cacao plantations. Agrofor Syst 38:139–164CrossRefGoogle Scholar
  3. Bellow J, Nair P (2003) Comparing common methods for assessing understory light availability in shaded-perennial agroforestry systems. Agric For Meteorol 114:197–211CrossRefGoogle Scholar
  4. Bolker BM, Brooks BE, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135CrossRefPubMedGoogle Scholar
  5. Borkhataria RR, Collazo JA, Groom MJ (2012) Species abundance and potential biological control services in shade vs. sun coffee in Puerto Rico. Agric Ecosyst Environ 151:1–5CrossRefGoogle Scholar
  6. Damon A (2000) A review of the biology and control of the coffee berry borer, Hypothenemus hampei (Coleoptera: scolytidae). Bull Entomol Res 90:453–465CrossRefPubMedGoogle Scholar
  7. EcoTrust (2012) Feasibility assessment for an agroforestry carbon management scheme for rural communities in Mbale, Bududa and Manafwa districts. Biomass Assessment. The Environmental Conservation Trust of Uganda. http://tacc.ccu.go.ug/uploads/docs/4213653Feasibility%20assessment%20%20for%20tree%20planting%20carbon%20scheme%20-Biomass%20Assessment.pdf
  8. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574CrossRefPubMedGoogle Scholar
  9. Hillocks RJ, Phiri NA, Overfield D (1999) Coffee pest and disease management options for smallholders in Malawi. Crop Prot 18:199–206CrossRefGoogle Scholar
  10. Hulme M, Doherty R, Ngara T, New M, Lister D (2001) African climate change: 1900-2100. Climate Res 17:145–168CrossRefGoogle Scholar
  11. Jaramillo J, Borgemeister C, Baker P (2006) Coffee berry borer Hypothenemus hampei (Coleoptera: curculionidae): searching for sustainable control strategies. Bull Entomol Res 96:223–233CrossRefPubMedGoogle Scholar
  12. Jaramillo J, Chabi-Olaye A, Kamonjo C, Jaramillo A, Vega FE, Poehling HM, Borgemeister C (2009) Thermal tolerance of the coffee berry borer Hypothenemus hampei: predictions of climate change impact on a tropical insect pest. PLoS ONE 4:e6487CrossRefPubMedCentralPubMedGoogle Scholar
  13. Jaramillo J, Muchugo E, Vega FE, Davis A, Borgemeister C, Chabi-Olaye A (2011) Some like it hot: the influence and implications of climate change on coffee berry borer (Hypothenemus hampei) and coffee production in East Africa. PLoS ONE 6:e24528CrossRefPubMedCentralPubMedGoogle Scholar
  14. Jaramillo J, Setamou M, Muchugu E, Chabi-Olaye A, Jaramillo A, Mukabana J, Maina J, Gatharan S, Borgemeister C (2013) Climate change or urbanization? Impacts on a traditional coffee production system in East Africa over the last 80 years. PLoS ONE 8:e51815CrossRefPubMedCentralPubMedGoogle Scholar
  15. Karp DS, Mendenhall CD, Sandi RF, Chaumont N, Ehrlich PR, Hadly EA, Daily GC (2013) Forest bolsters bird abundance, pest control and coffee yield. Ecol Lett 16:1339–1347CrossRefPubMedGoogle Scholar
  16. Kutywayo D, Chemura A, Kusena W, Chidoko P, Mahoya C (2013) The impact of climate change on the potential distribution of agricultural pests: the case of the Coffee white stem borer (Monochamus leuconotus P.) in Zimbabwe. PLoS ONE 8:e73432CrossRefPubMedCentralPubMedGoogle Scholar
  17. Letourneau DK, Armbrecht I, Salguero Rivera B, Montoya Lerma J, Jimenez Carmona E, Constanza Daza M, Escobar S, Galindo V, Gutierrez C, Duque Lopez S, Lopez Meija J, Acosta Rangel AMA, Herrera Rangel J, Rivera L, Arturo Saavedra C (2011) Does plant diversity benefit agroecosystems? A synthetic review. Ecol Appl 21:9–21CrossRefPubMedGoogle Scholar
  18. Lin BB, Perfecto I, Vandermeer J (2008) Synergies between agricultural intensification and climate change could create surprising vulnerabilities for crops. Bioscience 58:847–854CrossRefGoogle Scholar
  19. Pardee GL, Philpott SM (2011) Cascading indirect effects in a coffee agroecosystem: effects of parasitic phorid flies on ants and the coffee berry borer in a high-shade and low-shade habitat. Environ Entomol 40:581–588CrossRefPubMedGoogle Scholar
  20. Perfecto I, Rice RA, Greenberg R, Van der Voort ME (1996) Shade coffee: a disappearing refuge for biodiversity. Bioscience 46:598–608CrossRefGoogle Scholar
  21. Perfecto I, Mas A, Dietsch T, Vandermeer J (2003) Conservation of biodiversity in coffee agroecosystems: a tri-taxa comparison in southern Mexico. Biodiv Conserv 12:1239–1252CrossRefGoogle Scholar
  22. Perfecto I, Vandermeer JH, Lopez Bautista G, Ibarra Nunez G, Greenberg R, Bichier P, Langridge S (2004) Greater predation in shaded coffee farms: the role of resident neotropical birds. Ecology 85:2677–2681CrossRefGoogle Scholar
  23. R Development Core Team. (2011) R: a language for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org
  24. Railsback SF, Johnson MD (2013) Effects of land use on bird populations and pest control services on coffee farms. PNAS 111:6109–6114CrossRefGoogle Scholar
  25. Rao MR, Singh MP, Day R (2000) Insect pest problems in tropical agroforestry systems: contributory factors and strategies for management. Agrofor Syst 50:243–277CrossRefGoogle Scholar
  26. Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124CrossRefGoogle Scholar
  27. Rutherford MA, Phiri N (eds) (2006) Pests and diseases of coffee in Eastern Africa: a technical and advisory manual. CAB International, WallingfordGoogle Scholar
  28. Schroth G, Krauss U, Gasparotto L, Duarte Aguilar JA, Vohland K (2000) Pests and diseases in agroforestry systems of the humid tropics. Agrofor Syst 50:199–241CrossRefGoogle Scholar
  29. Sileshi G, Mafongoya PL (2003) Effect of rotational fallows on abundance of soil insects and weeds in maize crops in eastern Zambia. Appl Soil Ecol 23:211–222CrossRefGoogle Scholar
  30. Soto-Pinto L, Perfecto I, Caballero-Nieto J (2002) Shade over coffee: its effects on berry borer, leaf rust and spontaneous herbs in Chiapas, Mexico. Agrofor Syst 55:37–45CrossRefGoogle Scholar
  31. Teodoro A, Klein A-M, Tscharntke T (2008) Environmentally mediated coffee pest densities in relation to agroforestry management, using hierarchical partitioning analyses. Agr Ecosyst Environ 125:120–126CrossRefGoogle Scholar
  32. Teodoro A, Klein AM, Reis PR, Tscharntke T (2009) Agroforestry management affects coffee pests contingent on season and developmental stage. Agr Forest Entomol 11:295–300CrossRefGoogle Scholar
  33. Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Hölscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E, Wanger TC (2011) Multifunctional shade-tree management in tropical agroforestry landscapes–a review. J Appl Ecol 48:619–629CrossRefGoogle Scholar
  34. Vandermeer J, Perfecto I, Philpott S (2010) Ecological complexity and pest control in organic coffee production: uncovering an autonomous ecosystem service. Bioscience 60:527–537CrossRefGoogle Scholar
  35. Vega FE (2004) Coffee berry borer Hypothenemus hampei (Ferrari) (Coleoptera: Scolytidae). In: Capinera JL (ed) Encyclopedia of entomology, vol 4, 2nd edn. Springer Science+Business media B.V, Heidelberg, pp 959–960Google Scholar
  36. Verchot LV, Van Noordwijk M, Kandji S, Tomich T, Ong C, Albrecht A, Mackensen J, Bantilan C, Anupama KV, Palm C (2007) Climate change: linking adaptation and mitigation through agroforestry. Mitig Adapt Strat Glob Change 12:901–918CrossRefGoogle Scholar
  37. Willey RW (1975) The use of shade in coffee, cocoa and tea. Hortic Abs 45:791–798Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mattias Jonsson
    • 1
  • Ijala Anthony Raphael
    • 2
  • Barbara Ekbom
    • 1
  • Samuel Kyamanywa
    • 2
  • Jeninah Karungi
    • 2
  1. 1.Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
  2. 2.School of Agricultural SciencesMakerere UniversityKampalaUganda

Personalised recommendations