Skip to main content

Toxicity of essential oil compounds against diamondback moth, Plutella xylostella, and their impact on detoxification enzyme activities

Abstract

Essential oils are by-products of plant metabolism that are now known to interfere with basic metabolic, physiological and behavioral functions of insects, thereby having promise for use as pest control agents. Accordingly, four essential oil compounds, thymol, 1,8-cineole, linalool and pulegone, were evaluated against the diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Yponomeutidae), to determine their acute toxicity. Thymol and 1,8-cineole were highly toxic to third instars with a LD50 of 0.22 and 0.41 μg/larva, respectively. Linalool and pulegone were moderately active against this insect species, exhibiting <45 % mortality in up to 15 μg/larva. However, in biorational mixtures pulegone was synergistic to both thymol and 1,8-cineole where the increase in activity was almost twofold. Thymol and 1,8-cineole, though active individually against P. xylostella larvae, were antagonistic as biorational mixtures. Linalool was antagonistic in all combinations. In various assays with detoxification enzymes in treated conditions, there was a significant increase in enzyme levels both in vivo and in vitro. Thymol and 1,8-cineole were the active toxicants against P. xylostella, with significant potential to control this pest as biorational mixtures in a synergistic combination with pulegone. Induction in enzyme levels by these compounds suggests possibilities of resistance, which at present remains a speculation, but cannot be summarily ignored because the induction of enzymes due to involvement of detoxification enzymes in the metabolism of a broad range of xenobiotics and secondary metabolites in plants is well known.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Akhtar Y, Pages E, Stevens A, Bradbury R, da Camara CAG, Isman MB (2012) Effect of chemical complexity of essential oils on feeding deterrence in larvae of the cabbage looper, Trichoplusia ni. Physiol Entomol 37:81–91

    CAS  Article  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46:446–475

    CAS  PubMed  Article  Google Scholar 

  • Batish DR, Singh HP, Kohli RK, Kaur S (2008) Eucalyptus essential oil as a natural pesticide. For Ecol Manag 256:2166–2174

    Article  Google Scholar 

  • Bekele AJ, Hassanali A (2001) Blends effects in the toxicity of the essential oil constituents of Ocimum kilimandscharicum and Ocimum kenyense (Labiateae) on two post harvest pests. Phytochemistry 57:385–391

    CAS  PubMed  Article  Google Scholar 

  • Bekele AJ, Obeng-Ofori D, Hassanali A (1995) Products derived from the leaves of Ocimum kilimandscharicum (Labiateae) as post harvest grain protectants against the infestation of three major stored product insect pests. Bull Entomol Res 85:361–367

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Article  Google Scholar 

  • Bullangpoti V, Wajnberg E, Audant P, Feyereisen R (2012) Antifeedant activity of Jatropha gossypifolia and Melia azedarach senescent leaf extracts on Spodoptera frugiperda (Lepidoptera: Noctuidae) and their potential use as synergists. Pest Manag Sci 68:1255–1264

    CAS  PubMed  Article  Google Scholar 

  • Chaudhuri N, Ghosh S, Ghosh J, Senapati SK (2001) Incidence of insect pests of cabbage in relation to prevailing climatic conditions of Terai region. Indian J Entomol 63:421–428

    Google Scholar 

  • Cheng EY (1988) Problems of control of insecticide resistant Plutella xylostella. Pestic Sci 23:177–188

    CAS  Article  Google Scholar 

  • Chiasson H, Bostanian NJ, Vincent C (2004) Acaricidal properties of a Chenopodium-based botanical. J Econ Entomol 97:1373–1377

    CAS  PubMed  Article  Google Scholar 

  • Dadang L, Ohsawa K (2008) Toxicity of Cymbopogon citratus Stapf. (Poaceae) against the diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae) larvae. J ISSAAS 14:101–110

    Google Scholar 

  • Dary OGG, Pason E, Pasteur N (1990) Microplate adaptation of Gomori’s assay for quantitative determination of gerneral esterase activity in single insects. J Econ Entomol 85:2187–2192

    Google Scholar 

  • Dimetry NZ, Hafez M, Abbass MH (2003) Efficiency of some oils and neem formulations against the cow pea beetle, Callosobruchus maculatus (Fabricius) (Coleoptera: Bruchidae). In: Koul O, Dhaliwal GS, Marwaha SS, Arora JK (eds) Biopesticides and pest management, vol 2. Campus Books International, New Delhi, pp 1–10

    Google Scholar 

  • Don-Pedro KN (1996) Investigation of single and joint fumigant insecticidal action of citrus peel oil components. Pestic Sci 46:79–84

    CAS  Article  Google Scholar 

  • Eanes WF, Katona L, Longtine M (1990) Comparison of in vitro and in vivo activities associated with the GGPD allozyme polymorphism in Drosophila melanogaster. Genetics 125:845–859

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    CAS  PubMed  Article  Google Scholar 

  • EPA (2006) Regulating biopesticides. United States Environmental Protection Agency. http://www.epa.gov/oppbppd1/biopesticides/

  • Feng R, Chen W, Isman MB (1995) Synergism of malathion and inhibition of midgut esterase activities by an extract from Melia toosendan (Meliaceae). Pestic Biochem Physiol 53:34–41

    CAS  Article  Google Scholar 

  • Francis F, Vanhaelen N, Haubruge E (2005) Gluthione S-transferase in the adaptation of plant secondary metabolites in the Myzus persicae aphids. Arch Insect Biochem Physiol 58:166–174

    CAS  PubMed  Article  Google Scholar 

  • Furlong MJ, Wright DJ, Dosdall LM (2013) Diamond back moth ecology and management: problems, progress and prospects. Annu Rev Entomol 58:517–541

    CAS  PubMed  Article  Google Scholar 

  • Gu X, Tian S, Wang D, Gao G (2010) Interaction between short-term heat pretreatment and Fipronil on 2nd instar larvae of diamondback moth, Plutella xylostella (Linn). Dose-Response 8:331–346

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Han Z, Moores G, Devonshire A, Denholm I (1998) Association between biochemical markers and insecticide resistance in the cotton aphid, Aphis gossypii. Pestic Biochem Physiol 62:164–171

    CAS  Article  Google Scholar 

  • Ho SH, Ma Y, Huang Y (1997) Anethole, a potential insecticide from Illicium verum Hook F. against two stored product insects. Int Pest Control 39:50–51

    CAS  Google Scholar 

  • Hori M (1998) Repellency of rosemary oil against Myzus persicae in a laboratory and in a screen house. J Chem Ecol 24:1425–1432

    CAS  Article  Google Scholar 

  • Hummelbrunner AL, Isman MB (2001) Acute, sublethal, antifeedant and synergistic effects of monoterpenoid essential oil compounds on the tobacco cut worm (Lepidoptera: Noctuidae). J Agric Food Chem 49:715–720

    CAS  PubMed  Article  Google Scholar 

  • Isman MB (1999) Pesticides based on plant essential oils. Pestic Outlook 10:68–72

    CAS  Google Scholar 

  • Isman MB, Machial CM (2006) Pesticides based on plant essential oils: from traditional practice to commercialization. In: Rai M, Carpinella MC (eds) Naturally occurring bioactive compounds. Elsevier, BV, Amsterdam, pp 29–44

    Chapter  Google Scholar 

  • Isman MB, Wilson JA, Bradbury R (2008) Insecticidal activities of commercial rosemary oils (Rosmarinus officinalis) against larvae of Pseudaletia unipuncta and Trichoplusia ni in relation to their chemical compositions. Pharm Biol 46:82–87

    CAS  Article  Google Scholar 

  • Jiang ZL, Akhtar Y, Bradbury R, Zhang X, Isman MB (2009) Comparative toxicity of essential oils of Litseapungens and Litsea cubeba and blends of their major constituents against the cabbage looper, Trichoplusia ni. J Agric Food Chem 57:4833–4837

    CAS  PubMed  Article  Google Scholar 

  • Jiang ZL, Akhtar Y, Zhang X, Bradbury R, Isman MB (2012) Insecticidal and feeding deterrent activities of essential oils in the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae). J Appl Entomol 136:191–202

    CAS  Article  Google Scholar 

  • Kiran SR, Reddy AS, Devi PS, Reddy KJ (2006) Insecticidal, antifeedant and oviposition deterrent effects of the essential oil and individual compounds from leaves of Chloroxylon swietenia. Pest Manag Sci 62:1116–1121

    CAS  PubMed  Article  Google Scholar 

  • Koschier EH, Sedy KA (2001) Effects of plant volatiles on the feeding and oviposition of Thrips tabaci. In: Marullo R, Mound L (eds) Thrips and tospoviruses. CSIRO, Canberra, pp 185–187

    Google Scholar 

  • Koul O (2005) Insect Antifeedants. CRC Press, Boca Raton

    Google Scholar 

  • Koul O, Smirle MJ, Isman MB (1990) Asarones from Acorus calamus L. oil: their effect on feeding behaviour and dietary utilization in Peridroma saucia. J Chem Ecol 16:1911–1920

    CAS  PubMed  Article  Google Scholar 

  • Koul O, Walia S, Dhaliwal GS (2008) Essential oils as green pesticides: potential and constraints. Biopest Int 4:63–84

    Google Scholar 

  • Kulkarni RR, Pawar PV, Joseph MP, Akulwad AK, Sen A, Joshi SP (2013) Lavandula gibsoni and Plectranthus mollis essential oils: chemical analysis and insect control activities against Aedes aegypti, Anopheles sfttephensi and Culex quinquefasciatus. J Pest Sci 86:713–718

    Article  Google Scholar 

  • Li X, Berenbaum MR, Schuler MA (2000) Molecular cloning and expression of CYP6B8: a xanthotoxin inducible cytochrome P450 cDNA from Helicoverpa zea. Insect Biochem Mol 30:75–84

    CAS  Article  Google Scholar 

  • Li X, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Ann Rev Entomol 52:231–253

    Article  Google Scholar 

  • Li S-G, Li M-Y, Huang Y-Z, Hua R-M, Lin H-F, He Y-J, Wie L-L, Liu Z-Q (2013) Fumigant activity of Illicium verum fruit extracts and their effects on the acetylcholinesterase and glutathione S-transferase activities in adult Sitophilus zeamais. J Pest Sci 86:677–683

    Article  Google Scholar 

  • Liu MY, Tzeng YJ, Sun CN (1982) Insecticide resistance in the diamond back moth. J Econ Entomol 75:153–155

    CAS  Google Scholar 

  • Machial CM, Shikano I, Smirle M, Bradbury R, Isman MB (2010) Evaluation of the toxicityof 17 essential oils against Choristoneura rosaceana (Lepidoptera: Tortricidae) and Trichoplusia ni (Lepidoptera: Noctuidae). Pest Manag Sci 66:1116–1121

    CAS  PubMed  Article  Google Scholar 

  • Miresmailli S, Bradbury R, Isman MB (2006) Comparative toxicity of Rosmarinus officinalis L. essential oil and blends of its major constituents against Tetranychus urticae Koch (Acari: Tetranychidae) on two different host plants. Pest Manag Sci 62:366–371

    CAS  PubMed  Article  Google Scholar 

  • Nitbani FO, Kadang L, Bulin CDQM (2012) The essential oils from rhizome extracts of Acorus calamus L. are potential herbal insecticide against Plutella xylostella L. pests. J Appl Chem Sci 4:9–18

    Google Scholar 

  • Oppenoorth FJ, Van der Pas LJT, Houx NWH (1979) Glutathione S-transferases and hydrolytic activity in a tetrachlorvinphos-resistant strain of housefly and their influence on resistance. Pestic Biochem Physiol 11:176–188

    CAS  Article  Google Scholar 

  • Paruch E, Ciunik Z, Nawrot J, Wawrzenczyk C (2000) Lactones. 9. Synthesis of terpenoid lactones-active insect antifeedants. J Agric Food Chem 48:4973–4977

    CAS  PubMed  Article  Google Scholar 

  • Rachokarn S, Piyasaenghthong N, Bullangpoti V (2008) Impact of botanical extracts derived from leaf extracts of Melia azedarach L. (Meliaceae) and Amaranthus viridis L. (Amaranthaceae) on population of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) and detoxification enzyme activities. Commun Agric Appl Biol Sci 73:451–458

    PubMed  Google Scholar 

  • Ramsey JS, Rider DS, Walsh TK, DeVos M, Gordon KH, Ponnala L, Macmil SL, Roe BA, Jander G (2010) Comparative analysis of detoxification enzymes in Acyrthosiphon pisum and Myzus persicae. Insect Mol Biol 19:155–164

    CAS  PubMed  Article  Google Scholar 

  • Rattanapan A (2009) Effect of rotenone from derris crude extract on esterase enzyme mechanism in the beet armyworm, Spodoptera exigua (Hübner). Commun Agric Appl Biol Sci 74:437–444

    PubMed  Google Scholar 

  • Regnault-Roger C, Philogene BJR (2008) Past and current prospects for the use of botanicals and plant allelochemicals in integrated pest management. Pharm Biol 46:41–52

    CAS  Article  Google Scholar 

  • Rice PJ, Coats JR (1994) Insecticidal properties of several monoterpenoids to the housefly (Diptera: Muscidae), red flour beetle (Coleoptera: Tenebrionidae), and southern corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 87:1172–1179

    CAS  PubMed  Google Scholar 

  • Rosa JS, Mascarenhas C, Oliveira L, Teixeira T, Barreto MC, Medeiros J (2010) Biological activity of essential oils from seven Azorean plants against Pseudaletia unipuncta (Lepidoptera: Noctuidae). J Appl Entomol 134:346–354

    CAS  Article  Google Scholar 

  • Roux O, Gevrey M, Arvanitakis L, Gers C, Bordat D, Legal L (2007) ISSR-PCR: tool for discrimination and genetic structure analysis of Plutella xylostella populations native to different geographical areas. Mol Phylogenet Evol 43:240–250

    CAS  PubMed  Article  Google Scholar 

  • Saxena BP, Koul O, Tikku K, Atal CK (1977) A new insect chemosterilant isolated from Acorus calamus L. Nat Lond 270:512–513

    CAS  Article  Google Scholar 

  • Simon JY, Hsu EL (1993) Induction of detoxification enzymes in phytophagous insects: role of insecticide synergists, larval age and species. Arch Insect Biochem Physiol 24:21–32

    Article  Google Scholar 

  • Singh R, Rup PJ, Koul O (2008) Bioefficacy of 1,8-cineole from Eucalyptus camaldulensis var. obtuse and linalool from Luvanga scandans against Spodoptera litura (Lepidoptera: Noctuidae) and combination effects with some other monoterpenoids. Biopestic Int 4:128–137

    Google Scholar 

  • Singh R, Koul O, Rup PJ, Jindal J (2009) Toxicity of some essential oil constituents and their binary mixtures against Chilo partellus Swinhoe (Lepidoptera: Pyralidae). Int J Trop Insect Sci 29:93–101

    CAS  Article  Google Scholar 

  • Singh R, Koul O, Rup PJ, Jindal J (2011) Oviposition and feeding behavior of the maize borer, Chilo partellus, in response to eight essential oil allelochemicals. Entomol Exp et Appl 138:55–64

    CAS  Article  Google Scholar 

  • Sukhirun N, Pluempanupat W, Bullangpoti V, Koul O (2011) Bioefficacy of Alpinia galanga (Zingiberaceae) rhizome extracts, (E)-p-acetoxycinnamyl alcohol, and (E)-p-coumaryl alcohol ethyl ether against Bactrocera dorsalis (Diptera: Tephritidae) and the impact on detoxification enzyme activities. J Econ Entomol 104:1534–1540

    CAS  PubMed  Article  Google Scholar 

  • Sun J, Liang P, Gao X (2010) Inheritance ofresistance to a new non-steroidal ecdysone agonist, fufenozide, in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Pest Manag Sci 66:406–411

    CAS  PubMed  Google Scholar 

  • Suwansirisilp K, Visetson S, Prabaripai A, Tanasinchayakul S, Grieco JP, Bangs MJ, Chareonviriyaphap T (2013) Behavioral responses of Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) to four essential oils in Thailand. J Pest Sci 86:309–320

    Article  Google Scholar 

  • Szendrei Z, Rodriguez-Saona C (2010) A meta-analysis of insect pest behavioral manipulation with plant volatiles. Entomol Exp Appl 134:201–210

    Article  Google Scholar 

  • Templeton W (1969) An introduction to the chemistry of terpenoids and steroids. Butterworths, London

    Google Scholar 

  • Tripathi AK, Prajapati V, Kumar S (2003) Bioactivity of l-carvone, d-carvone and dihydrocarvone towards three stored product beetles. J Econ Entomol 96:1594–1601

    CAS  PubMed  Article  Google Scholar 

  • Trisyono A, Whalon M (1999) Toxicity of neem applied alone and in combinations with Bacillus thuringiensis to Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 92:1281–1288

    CAS  Google Scholar 

  • Waliwitiya R, Kennedy CJ, Lowenberger CA (2009) Larvicidaland oviposition-altering activity of monoterpenoids, trans-anitholeand rosemary oil to the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Pest Manag Sci 65:241–248

    CAS  PubMed  Article  Google Scholar 

  • Yi C-G, Kwon M, Hieum TT, Jang Y-S, Ahn Y-J (2007) Fumigant toxicity of plant essential oils to Plutella xylostella (Lepidoptera: Yponomeutidae) and Cotesia glomerata (Hymenoptera: Braconidae). J Asia-Pac Entomol 10:157–163

    Article  Google Scholar 

  • Youssef NN, Oliver JB, Ranger CM, Reding ME, Moyseenko JJ, Klein MG, Pappas RS (2009) Field evaluation of essential oils for reducing attraction by the Japanese beetle (Coleoptera: Scarabaeidae). J Econ Entomol 102:1551–1558

    PubMed  Article  Google Scholar 

  • Zhang M, Ling B, Chen S, Liang G, Pang X (2004) Repellent and oviposition deterrent activities of the essential oil from Mikania micrantha and its compounds on Plutella xylostella. Insect Sci 11:37–45

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. M.J. Smirle, Agriculture Canada, Summerland, Canada, for valuable comments and suggestions for the earlier version of this manuscript. This research was supported by funding from the Zoology Department, Assistant Researcher Funding and ScRF from the Faculty of Science and Graduate School, Kasetsart University. W.P. is grateful to the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission, Ministry of Education, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasakorn Bullangpoti.

Additional information

Communicated by M. B. Isman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumrungsee, N., Pluempanupat, W., Koul, O. et al. Toxicity of essential oil compounds against diamondback moth, Plutella xylostella, and their impact on detoxification enzyme activities. J Pest Sci 87, 721–729 (2014). https://doi.org/10.1007/s10340-014-0602-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-014-0602-6

Keywords

  • Acute toxicity
  • Essential oil compounds
  • Biorational mixtures
  • Diamondback moth
  • P. xylostella
  • Detoxification enzymes