Skip to main content
Log in

Population dynamics of Thaumastocoris peregrinus in Eucalyptus plantations of South Africa

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Thaumastocoris peregrinus is a sap-sucking insect that infests non-native Eucalyptus plantations in Africa, New Zealand, South America and parts of Southern Europe, in addition to street trees in parts of its native range of Australia. In South Africa, pronounced fluctuations in the population densities have been observed. To characterise spatiotemporal variability in T. peregrinus abundance and the factors that might influence it, we monitored adult population densities at six sites in the main eucalypt growing regions of South Africa. At each site, twenty yellow sticky traps were monitored weekly for 30 months, together with climatic data. We also characterised the influence of temperature on growth and survival experimentally and used this to model how temperature may influence population dynamics. T. peregrinus was present throughout the year at all sites, with annual site-specific peaks in abundance. Peaks occurred during autumn (February–April) for the Pretoria site, summer (November–January) for the Zululand site and spring (August–October) for the Tzaneen, Sabie and Piet Retief monitoring sites. Temperature (both experimental and field-collected), humidity and rainfall were mostly weakly, or not at all, associated with population fluctuations. It is clear that a complex interaction of these and other factors (e.g. host quality) influence population fluctuations in an annual, site specific cycle. The results obtained not only provide insights into the biology of T. peregrinus, but will also be important for future planning of monitoring and control programs using semiochemicals, chemical insecticides or biological control agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott KC, Dwyer G (2007) Food limitation and insect outbreaks: complex dynamics in plant-herbivore models. J Anim Ecol 76:1004–1014

    Article  PubMed  Google Scholar 

  • Addo-Bediako A, Chown SL, Gaston KJ (2000) Thermal tolerance, climatic variability and latitude. Proc R Soc Lond B 267:739–745

    Article  CAS  Google Scholar 

  • Beck SD (1983) Insect thermoperiodism. Annu Rev Entomol 28:91–108

    Article  Google Scholar 

  • Block W, Baust JG, Franks F, Johnston IA, Bale J (1990) Cold tolerance of insects and other arthropods. Philos Trans R Soc Lond B 326(1237):613–633

    Article  Google Scholar 

  • Byrne MJ, Currin S, Hill MP (2002) The influence of climate on the establishment and success of the biocontrol agent Gratiana spadicea, released on Solanum sisymbriifolium in South Africa. Biol Control 24:128–134

    Article  Google Scholar 

  • Campbell A, Frazer BD, Gilbert N, Gutierrez AP, Mackauer M (1974) Temperature requirements of some aphids and their parasites. J Appl Ecol 11(2):431–438

    Article  Google Scholar 

  • Carpintero DL, Dellapé PM (2006) A new species of Thaumastocoris Kirkaldy from Argentina (Heteroptera: Thaumastocoridae: Thaumastocorinae). Zootaxa 1228:61–68

    Google Scholar 

  • Chilima CZ, Leather SR (2001) Within-tree and seasonal distribution of the pine woolly aphid Pineus boerneri on Pinus kesiya trees. Agric For Entomol 3(2):139–145

    Article  Google Scholar 

  • Crozier LG (2004) Field transplants reveal summer constraints on a butterfly range expansion. Oecologia 141(1):148–157

    Article  PubMed  Google Scholar 

  • Duyck P, David P, Quilici S (2006) Climatic niche partitioning following successive invasions by the fruit flies in La Réunion. J Anim Ecol 75:518–526

    Article  PubMed  Google Scholar 

  • Ferron P (1978) Biological control of insect pests by entomogenous fungi. Annu Rev Entomol 23(1):409–442

    Article  Google Scholar 

  • Fry FEJ (1967) Responses of vertebrate poikilotherms to temperature. In: Rose AH (ed) Thermobiology. Academic Press, London, pp 375–409

    Google Scholar 

  • Gaston KJ (2009) Geographic range limits: achieving synthesis. Proc R Soc Biol Sci Ser B 276(1661):1395–1406

    Article  Google Scholar 

  • González A, Calvo MV, Cal V, Hernández V, Doño F, Alves L, Gamenara D, Rossini C, Martínez G (2012) A male aggregation pheromone in the bronze bug, Thaumastocoris peregrinus (Thaumastocoridae). Psyche (New York) 1–7

  • Hill L (1988) The identity and biology of Baclozygum depressum Bergroth (Hemiptera: Thaumastocoridae). J Aust Entomol Soc 27:37–42

    Article  Google Scholar 

  • Jacobs DH, Neser S (2005) Thaumastocoris australicus Kirkaldy (Heteroptera: Thaumastocoridae): a new insect arrival in South Africa, damaging to Eucalyptus trees. S Afr J Sci 101:233–236

    Google Scholar 

  • Jones RE (2001) Mechanisms for locating resources in space and time: impacts on the abundance of insect herbivores. Austral Ecol 26(5):518–524

    Article  Google Scholar 

  • Kay CAR, Whitford WG (1978) Critical thermal limits of desert honey ants: possible ecological implications. Physiol Zool 51(2):206–213

    Google Scholar 

  • Klok CJ, Chown SL (1997) Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic caterpillar, Pringleophaga marioni (Lepidoptera: Tineidae). J Insect Physiol 43(7):685–694

    Article  CAS  Google Scholar 

  • Klueken AM, Hau B, Ulber B, Poehling HM (2009) Forecasting migration of cereal aphids (Hemiptera: Aphididae) in autumn and spring. J Appl Entomol 133(5):328–344

    Article  Google Scholar 

  • Kouskolekas CA, Decker GC (1966) The effect of temperature on the rate of development of the potato leafhopper, Empoasca fabae (Homoptera: Cicadellidae). Ann Entomol Soc Am 59:292–298

    Article  Google Scholar 

  • Laudonia S, Sasso R (2012) The bronze bug Thaumastocoris peregrinus: a new insect recorded in Italy, damaging to Eucalyptus trees. Bull Insectol 65(1):89–93

    Google Scholar 

  • Liebhold AM, Haynes KL, Bjørnstad ON (2012) Spatial synchrony of insect outbreaks. In: Barbosa LR, Letourneau DK, Agrawal AA (eds) Insect outbreaks revisited, 1st edn. Wiley–Blackwell, Hoboken, pp 113–125

    Chapter  Google Scholar 

  • Lin N, Huber JT, La Salle J (2007) The Australian genera of Mymaridae (Hymenoptera: Chalcidoidea). Zootaxa 1596:3–111

    Google Scholar 

  • Martínez G, Bianchi M (2010) First record in Uruguay of the bronze bug, Thaumastocoris peregrinus Carpintero and Dellappé, 2006 (Heteroptera: Thaumastocoridae). Agrociencia (Montevideo) 14(1):15–18

    Google Scholar 

  • Martínez G, González A, Simeto S, Balmelli G (2010) Monitoring the bronze bug, Thaumastocoris peregrinus (Heteroptera: Thaumastocoridae): effect of trap placement. Int Forest Rev 12(5):360

    Google Scholar 

  • Martins CBC, Zarbin PHG (2013) Volatile organic compounds of conspecific-damaged Eucalyptus benthamii influence responses of mated females of Thaumastocoris peregrinus. J Chem Ecol 39(5):602–611

    Article  CAS  PubMed  Google Scholar 

  • Mascarin GM, Duarte VdS, Brandão MM, Delalibera Í Jr (2012) Natural occurrence of Zoophthora radicans (Entomophthorales: Entomophthoraceae) on Thaumastocoris peregrinus (Heteroptera: Thaumastocoridae), an invasive pest recently found in Brazil. J Invertebr Pathol 110(3):401–404

    Article  PubMed  Google Scholar 

  • Maywald GF, Kriticos DJ, Sutherst RW, Bottomley W (2007) DYMEX 3.0. Hearne Scientific Publishing, Melbourne

    Google Scholar 

  • Mitchell JD, Hewitt PH, van der Linde TCDK (1993) Critical thermal limits and temperature tolerance in harvester termite Hodotermes mossambicus (Hagen). J Insect Physiol 39(6):523–528

    Article  Google Scholar 

  • Moran P (1953) The statistical analysis of the Canadian Lynx cycle. Aust J Zool 1(3):291–298

    Article  Google Scholar 

  • Moriyama M, Numata H (2006) Induction of egg hatching by high humidity in the cicada Cryptotympana facialis. J Insect Physiol 52:1219–1225

    Article  CAS  PubMed  Google Scholar 

  • Nadel RL, Noack AE (2012) Current understanding of Thaumastocoris peregrinus in a quest for its management and control. Int J Pest Manag 58(03):257–266

    Article  Google Scholar 

  • Nadel RL, Slippers B, Scholes MC, Lawson SA, Noack AE, Wilcken CF, Bouvet JP, Wingfield MJ (2010) DNA bar-coding reveals source and patterns of Thaumastocoris peregrinus invasions in South Africa and South America. Biol Invasions 12(5):1067–1077

    Article  Google Scholar 

  • Nadel RL, Wingfield MJ, Scholes MC, Lawson SA, Noack AE, Neser S, Slippers B (2012) Mitochondrial DNA diversity of Cleruchoides noackae (Hymenoptera: Mymaridae): a potential biological control agent for Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae). Biocontrol 57(3):397–404

    Article  Google Scholar 

  • Noack AE (2009) The taxonomic revision of the genus Thaumastocoris and the biology and chemical control of the eucalypt pest Thaumastocoris peregrinus (Heteroptera: Thaumastocoridae). PhD thesis, The University of Sydney, Sydney, pp 250

  • Noack AE, Coviella CE (2006) Thaumastocoris australicus Kirkaldy (Hemiptera: Thaumastocoridae): first record of this invasive pest of Eucalyptus in the Americas. Gen Appl Entomol 35:13–15

    Google Scholar 

  • Noack AE, Rose HA (2007) Life-history of Thaumastocoris peregrinus and Thaumastocoris sp. in the laboratory with some observations on behaviour. Gen Appl Entomol 36:27–33

    Google Scholar 

  • Noack A, Kaapro J, Bartimote-Aufflick K, Mansfield S, Rose HA (2009) Efficacy of Imidacloprid in the control of Thaumastocoris peregrinus on Eucalyptus scoparia in Sydney. Australia. Arbor Urban For 35(4):192–196

    Google Scholar 

  • Noack AE, Cassis G, Rose HA (2011) Systematic revision of Thaumastocoris Kirkaldy (Hemiptera: Heteroptera: Thaumastocoridae). Zootaxa 3121:1–60

    Google Scholar 

  • Oumar Z, Mutanga O (2013) Predicting water stress induced by Thaumastocoris peregrinus infestations in plantation forests using field spectroscopy and neural networks. Journal of Spatial Science 58:1–12

    Article  Google Scholar 

  • R Core Team (2012) R: A Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Samuels RI, Coracini DLA, Martins dos Santos CA, Gava CAT (2002) Infection of Blissus antillus (Hemiptera: Lygaeidae) eggs by the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Biol Control 23(3):269–273

    Article  Google Scholar 

  • Simmons AN, Legaspi JC, Legaspi BC (2008) Responses of Delphastus catalinae (Coleoptera: Coccinellidae), a predator of whiteflies (Hemiptera: Aleyrodidae), to relative humidity: oviposition, hatch, and immature survival. Ann Entomol Soc Am 101(2):378–383

    Article  Google Scholar 

  • Soliman E, Wilcken C, Pereira J, Dias T, Zaché B, Dal Pogetto M, Barbosa L (2012) Biology of Thaumastocoris peregrinus in different eucalyptus species and hybrids. Phytoparasitica 40(3):223–230

    Article  Google Scholar 

  • Son Y, Lewis EE (2005) Modelling temperature-dependent development and survival of Otiorhynchus sulcatus (Coleoptera: Curculionidae). Agric For Entomol 7:201–209

    Article  Google Scholar 

  • Sopow S, George S, Ward N (2012) Bronze Bug, Thaumastocoris peregrinus: a new Eucalyptus pest in New Zealand. Surveillance 39(2):43–46

    Google Scholar 

  • Specht RL, Brouwer YM (1975) Seasonal growth of Eucalyptus spp. in the Brisbane area of Queensland (with notes on shoot growth and litter fall in other areas of Australia). Aust J Bot 23:459–474

    Article  Google Scholar 

  • Stiling P (1988) Density-dependent processes and key factors in insect populations. J Anim Ecol 57(2):581–593

    Article  Google Scholar 

  • Sutcliffe J (1977) Plants and temperature. Edward Arnold Publishers Ltd., London

    Google Scholar 

  • Umbanhowar J, Hastings A (2002) The impact of resource limitation and the phenology of parasitoid attack on the duration of insect herbivore outbreaks. Theor Popul Biol 62:259–269

    Article  PubMed  Google Scholar 

  • Wilcken CF, Soliman EP, de Sá LAN, Barbosa LR, Dias TKR, Ferreira-Filho PJ (2010) Bronze Bug Thaumastocoris peregrinus Carpintero and Dellapé (Hemiptera: Thaumastocoridae) on Eucalyptus in Brazil and its distribution. J Plant Prot Res 50(2):201–205

    Article  Google Scholar 

  • Wolda H (1978) Seasonal fluctuations in rainfall, food and abundance of tropical insects. J Anim Ecol 47(2):369–381

    Article  Google Scholar 

Download references

Acknowledgments

Members of the Tree Protection Co-operative Programme (TPCP), the Department of Trade and Industry THRIP programme and the National Research Foundation (NRF) are thanked for financial support. We also thank Botha Maree, Sonia du Buisson, Maurits Perold (Hans Merensky), Rhudolf Müller, Tony Winter (Mondi), Denis Oscroft and Tammy Swain (ICFR) and Glen Mitchell and Kholisa Langa (KLF) for their assistance with this trial. We are grateful to Dr. Ilaria Germishuizen of the Institute for Commercial Forestry Research (ICFR) for providing the plantation forestry map (Fig. 1) using the National land-cover database 2000 CSIR/ARC. We also thank the National Zoological Gardens, Pretoria for allowing us to use the Tom Jenkins Eucalyptus plantation for sampling and the South African Weather Service for providing some of the weather data for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan L. Nadel.

Additional information

Communicated by A. Battisti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadel, R.L., Wingfield, M.J., Scholes, M.C. et al. Population dynamics of Thaumastocoris peregrinus in Eucalyptus plantations of South Africa. J Pest Sci 88, 97–106 (2015). https://doi.org/10.1007/s10340-014-0558-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-014-0558-6

Keywords

Navigation