Skip to main content
Log in

Temperature-dependent development and survival of Podisus maculiventris (Hemiptera: Pentatomidae): implications for mass rearing and biological control

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

The spined soldier bug, Podisus maculiventris (Say), is a generalist predator that can control >75 insect pests in various agroecosystems. Despite valuable results from the previous studies, thermal development and survival of P. maculiventris over a wide range of temperatures had not been elucidated completely. This study was conducted to investigate the stage-specific development and survival of P. maculiventris at eight constant temperatures (13.2, 18.4, 21.7, 23.7, 27.2, 32.7, 35.2, and 40.6 °C) covering the entire thermal range for P. maculiventris development. Completion of egg development was observed at 13.2–32.7 °C, whereas nymphs successfully developed into adults at 18.4–32.7 °C. Survival model using log-normal equations showed bell-shape patterns for all stages, and temperatures resulting in highest survival of P. maculiventris were 19.9, 24.3, and 24.5 °C for egg, nymph, and egg to adult, respectively. Developmental rates at the eight temperatures were fitted with a nonlinear Briere model, which estimated optimal temperatures for development as 31.2, 30.6, and 30.6 °C for egg, nymph, and egg to adult, respectively. Operative thermal ranges (i.e., in-between the lower and upper developmental thresholds) were estimated to be 8.9–35.2, 12.8–35.2, and 12.7–35.2 °C for egg, nymph, and egg to adult, respectively. In a linear model, the lower thresholds were 10.9, 13.1, and 13.0 °C for egg, nymph, and egg to adult, respectively. Findings herein provide comprehensive data and explanations on optimal temperature and thermal requirement for P. maculiventris, which can be used to optimize environmental condition in mass rearing and predicting phenology of P. maculiventris in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aldrich JR, Kochansky JP, Abrams CB (1984) Attractant for a beneficial insect and its parasitoids: pheromone of the predatory spined soldier bug, Podisus maculiventris (Hemiptera: Pentatomidae). Environ Entomol 13:1031–1036

    CAS  Google Scholar 

  • Allen JC, Yang Y, Knappe KL (1995) Temperature effects on development and fecundity of the citrus rust mite (Acari: Eriophyidae). Environ Entomol 24:996–1004

    Google Scholar 

  • Andreadis SS, Kagkelaris NK, Eliopoulos PA, Savopoulou-Soultani M (2013) Temperature-dependent development of Sesamia nonagrioides. J Pest Sci 86:409–417

    Article  Google Scholar 

  • Arbab A, Mcneill MR (2011) Determining suitability of thermal development models to estimate temperature parameters for embryonic development of Sitona lepidus Gyll. (Coleoptera: Curculionidae). J Pest Sci 84:303–311

    Article  Google Scholar 

  • Beck SD (1983) Insect thermoperiodism. Annu Rev Entomol 28:91–108

    Article  Google Scholar 

  • Briere JF, Pracros P (1998) Comparison of temperature-dependent growth models with the development of Losbesia botrana (Lepidoptera: Tortricidae). Environ Entomol 27:94–101

    Google Scholar 

  • Briére JF, Pracros P, Le Broux AY, Pierre JS (1999) A novel rate model of temperature-dependent development for arthropods. Environ Entomol 28:22–29

    Google Scholar 

  • Campbell A, Frazer BD, Gilbert N, Gutierrez AP, Mackauer M (1974) Temperature requirements of some aphids and their parasites. J Appl Ecol 11:431–438

    Article  Google Scholar 

  • Coudron TA, Ellersieck MR, Shelby KS (2007) Influence of diet on long-term cold storage of the predator Podisus maculiventris (Say) (Heteroptera: Pentatomidae). Biol Control 42:186–195

    Article  Google Scholar 

  • Culliney TW (1986) Predation on adult Phyllotreta flea beetles by Podisus maculiventris (Hemiptera: Pentatomidae) and Nabicula americolimbata (Hemiptera: Nabidae). Can Entomol 118:731–732

    Article  Google Scholar 

  • Curry GL, Feldman RM, Sharpe PJH (1978) Foundation of stochastic development. J Theor Biol 74:397–410

    Article  PubMed  CAS  Google Scholar 

  • Davidson J (1944) On the relationship between temperature and rate of development of insects at constant temperatures. J Anim Ecol 13:26–28

    Article  Google Scholar 

  • De Clercq P (2000) Predaceous stinkbugs (Pentatomidae: Asopinae). In: Schaefer CW, Panizzi AR (eds) Heteroptera of economic importance. CRC Press, Boca Raton, pp 737–789

    Chapter  Google Scholar 

  • De Clercq P (2008) Spined soldier bug, Podisus maculiventris Say (Hemiptera: Pentatomidae: Asopinae). In: Capinera JL (ed) Encyclopedia of entomology, vol 4. Springer, Heidelberg, pp 3508–3510

    Google Scholar 

  • De Clercq P, Degheele D (1992) Development and survival of Podisus maculiventris (Say) and Podisus sagitta (Fab.) (Heteroptera: Pentatomidae) at various constant temperature. Biol Control 12:137–142

    Article  Google Scholar 

  • De Clercq P, Merlevede F, Mestdagh I, Vandendurpel K, Mohaghegh J, Degheele D (1998) Predation on the tomato looper Chrysodeixis chalcites (Esper) (Lepidoptera: Noctuidae) by Podisus maculiventris (Say) and Podisus nigrispinus (Dallas) (Hemiptera: Pentatomidae). J Appl Entomol 122:93–98

    Article  Google Scholar 

  • De Clercq P, Wyckhuys K, De Olivera HN, Klapwijk J (2002) Predation by Podisus maculiventris on different life stages of Nezara viridula. Fla Entomol 85:197–202

    Article  Google Scholar 

  • Desurmont G, Weston PA (2008) Predation by Podisus maculiventris (Say) (Hemiptera: Pentatomidae) on viburnum leaf beetle, Pyrrhalta viburni (Paykull) (Coleoptera: Chrysomelidae), under laboratory and field conditions. Environ Entomol 37:1241–1251

    Article  PubMed  Google Scholar 

  • Dixon AFG, Honěk A, Keil P, Kotela MAA, Šizling AL, Jarošik V (2009) Relationship between the minimum and maximum temperature thresholds for development in insects. Funct Ecol 23:257–264

    Article  Google Scholar 

  • Fan Y, Groden E, Drummond FA (1992) Temperature-dependent development of Mexican bean beetle (Coleoptera: Coccinellidae) under constant and variable temperatures. J Econ Entomol 85:1762–1770

    Google Scholar 

  • Gilbert N, Ragworth DA (1996) Insects and temperature—a general theory. Can Entomol 128:1–13

    Article  Google Scholar 

  • Hance T, van Baaren J, Vernon P, Boivin G (2007) Impact of extreme temperatures on parasitoids in a climate change perspective. Annu Rev Entomol 52:107–126

    Article  PubMed  CAS  Google Scholar 

  • Hart AJ, Tullett AG, Bale JS, Walters KRA (2002) Effects of temperature on the establishment potential in the UK of the non-native glasshouse biocontrol agent Macrolophus caliginosus. Physiol Entomol 27:112–123

    Article  Google Scholar 

  • Hatherly IS, Hart AJ, Tullett AG, Bale JS (2005) Use of thermal data as a screen for the establishment potential of non-native biological control agents in the UK. Biocontrol 50:687–698

    Article  Google Scholar 

  • Herrick NJ, Reitz SR (2004) Temporal occurrence of Podisus maculiventris (Heteroptera: Pentatomidae) in North Florida. Fla Entomol 87:587–590

    Article  Google Scholar 

  • Higley LG, Pedigo LP, Ostlie KR (1986) DEGDAY: a program for calculating degree-days, and assumptions behind the degree-day approach. Environ Entomol 15:999–1016

    Google Scholar 

  • Jandel Scientific (1996) TableCurve 2D. Automated curve fitting and equation discovery, version 4.0. Jandel Scientific, San Rafael

    Google Scholar 

  • Kim DS, Lee JH, Yiem MS (2001) Temperature-dependent development of Carposina sasakii (Lepidoptera: Carposinidae) and its stage emergence models. Environ Entomol 30:298–305

    Article  Google Scholar 

  • Legaspi JC (2004) Life history of Podisus maculiventris adult females under different constant temperatures. Environ Entomol 33:1200–1206

    Article  Google Scholar 

  • Legaspi JC, Legaspi BC Jr (2005) Life table analysis for Podisus maculiventris immatures and female adults under four constant temperatures. Environ Entomol 34:990–998

    Article  Google Scholar 

  • Legaspi JC, Legaspi BC Jr (2007) Bioclimatic model of the spined soldier bug (Heteroptera: Pentatomidae) using CLIMEX: testing model predictions at two spatial scales. J Entomol Sci 42:533–537

    Google Scholar 

  • Legaspi JC, O’Neil RJ (1993) Life history of Podisus maculiventris given low numbers of Epilachna varivestis as prey. Environ Entomol 22:1192–1200

    Google Scholar 

  • Logan JA, Wollkind DJ, Hoyt SC, Tanigoshi LK (1976) An analytic model for description of temperature dependent rate phenomena in arthropods. Environ Entomol 5:1133–1140

    Google Scholar 

  • Lutterschmidt WJ, Hutchison VH (1997) The critical thermal maximum: history and critique. Can J Zool 75:1561–1574

    Article  Google Scholar 

  • Mahdian K, Kerchhove J, Tierry L, De Clercq P (2006) Effects of diet on development and reproduction of the predatory pentatomids Picromerus bidens and Podisus maculiventris. Biocontrol 51:725–739

    Article  Google Scholar 

  • McPherson JE (1980) A list of the prey species of Podisus maculiventris (Hemiptera: Pentatomidae). Great Lakes Entomol 13:18–24

    Google Scholar 

  • Mukerji MK, LeRoux EJ (1965) Laboratory rearing of a Quebec strain of the pentatomid predator, Podisus maculiventris (Say) (Hemiptera: Pentatomidae). Phytoprotection 46:40–60

    Google Scholar 

  • O’Neil RJ (1988) Predation by Podisus maculiventris (Say) on Mexican bean beetle, Epilachna varivestis Mulsant, in Indiana soybeans. Can Entomol 120:161–166

    Article  Google Scholar 

  • Pruess KP (1983) Day-degree methods for pest management. Environ Entomol 12:613–619

    Google Scholar 

  • Régnière J (1984) A method for describing and using variability in development rates for simulation of insect phenology. Can Entomol 116:1367–1376

    Article  Google Scholar 

  • Régnière J, Powell J, Bentz B, Nealis V (2012) Effects of temperature on development, survival and reproduction of insects: experimental design, data analysis and modeling. J Insect Physiol 58:634–647

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Sanona C, Miller JC (1999) Temperature-dependent effects on development, mortality, and growth of Hippodamia convergens (Coleoptera: Coccinellidae). Environ Entomol 28:518–522

    Google Scholar 

  • Roltsch WJ, Zalom FG, Strawn AJ, Strand JF, Pitcairn MJ (1999) Evaluation of several degree-day estimation methods in California climates. Int J Biometeorol 42:169–176

    Article  Google Scholar 

  • Ruberson JR, Tauber MJ, Tauber CA (1986) Plant feeding by Podisus maculiventris (Heteroptera: Pentatomidae): Effect on survival, development, and preoviposition period. Environ Entomol 15:894–897

    Google Scholar 

  • Sant’Ana J, Dickens JC (1998) Comparative electrophysiological studies of olfaction in predaceous bugs, Podisus maculiventris and P. nigrispinus. J Chem Ecol 24:965–984

    Article  Google Scholar 

  • SAS Institute (1995) SAS/STAT user’s guide, version 6.11. SAS Institute, Cary

    Google Scholar 

  • Schoolfield RM, Sharpe PJH, Magnuson CE (1981) Nonlinear regression of biological temperature-dependent rate model based on absolute reaction-rate theory. J Theor Biol 88:719–731

    Article  PubMed  CAS  Google Scholar 

  • Sharpe PJH, DeMichele DW (1977) Reaction kinetics of poikilotherm development. J Theor Biol 64:649–670

    Article  PubMed  CAS  Google Scholar 

  • Son Y, Nadel H, Baek S, Johnson MW, Morgan DJW (2012) Estimation of developmental parameters for adult emergence of Gonatocerus morgani, a novel egg parasitoid of the glassy-winged sharpshooter, and development of a degree-day model. Biol Control 60:233–240

    Article  Google Scholar 

  • Stamopoulos DC, Chloridis A (1994) Predation rates, survivorship and development of Podisus maculiventris (Hem.: Pentatomidae) on larvae of Leptinotarsa decemlineata (Col.: Chrysomelidae) and Pieris brassicae (Lep.: Pieridae), under field conditions. Entomophaga 39:3–9

    Article  Google Scholar 

  • Taylor F (1981) Ecology and evolution of physiological time in insects. Am Nat 117:1–23

    Article  Google Scholar 

  • Tipping PW, Holke CA, Abdul-Baki AA, Aldrich JR (1999) Evaluating Edovum puttleri Grissell and Podisus maculiventris (Say) for augmentative biological control of Colorado potato beetle in tomatoes. Biol Control 16:35–42

    Article  Google Scholar 

  • Van Kirk JR, AliNiazee MT (1981) Determining low-temperature threshold for pupal development of the western cherry fruit fly for use in phenology models. Environ Entomol 10:968–971

    Google Scholar 

  • Wagner TL, Wu HI, Sharpe PJH, Coulson RN (1984) Modeling distribution of insect development rates: a literature review and application of the Weibull function. Environ Entomol 77:475–487

    Google Scholar 

  • Wagner TL, Wu HI, Feldman RM, Sharpe PJH, Coulson RN (1985) Multiple cohort approach for simulating development of insect population under variable temperature. Ann Entomol Soc Am 78:691–704

    Google Scholar 

  • Wang XG, Levy K, Son Y, Johnson MW, Daane KM (2012) Comparison of the thermal performance between a population of the olive fruit fly and its co-adapted parasitoids. Biol Control 60:247–254

    Article  Google Scholar 

  • Warren LO, Wallis G (1971) Biology of the spined soldier bug, Podisus maculiventris (Hemiptera: Pentatomidae). J Ga Entomol Soc 6:109–116

    Google Scholar 

  • Westich R, Hough-Goldstein J (2001) Temperature and host plant effects on predatory stink bugs for augmentative biological control. Biol Control 21:160–167

    Article  Google Scholar 

  • Wilstermann A, Vidal S (2013) Western corn rootworm egg hatch and larval development under constant and varying temperatures J. Pest Sci 86:419–428

    Article  Google Scholar 

  • Worner SP (1992) Performance of phenological models under variable temperature regimes: consequences of the Kaufmann or rate summation effect. Environ Entomol 21:689–699

    Google Scholar 

  • Zilahi-Balogh GMG, Salom SM, Kok LT (2003) Temperature-dependent development of the specialist predator Laricobius nigrinus (Coleoptera: Derodontidae). Environ Entomol 32:1322–1328

    Article  Google Scholar 

Download references

Acknowledgments

We thank C. Carrico, S. Gyawaly, and V. Kondo at West Virginia University for their technical assistance and suggestions on the insect rearing method. We also thank X. Wang who provided helpful comments for this manuscript. This study was supported by Specialty Block Grant Program, USDA Organic Research and Education Initiative Grant, and Cooperative Research with Rural Development Administration, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Lak Park.

Additional information

Communicated by R. Meyhöfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baek, S., Son, Y. & Park, YL. Temperature-dependent development and survival of Podisus maculiventris (Hemiptera: Pentatomidae): implications for mass rearing and biological control. J Pest Sci 87, 331–340 (2014). https://doi.org/10.1007/s10340-013-0546-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-013-0546-2

Keywords

Navigation