Skip to main content

Advertisement

Log in

Bioactivities of caffeic acid methyl ester (methyl-(E)-3-(3,4-dihydroxyphenyl)prop-2-enoate): a hydroxycinnamic acid derivative from Solanum melongena L. fruits

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Feeding deterrent and growth inhibitory effects of caffeic acid methyl ester (CME) isolated from the fruit extract of eggplant, Solanum melongena L. along with two known phenolic acids, caffeic acid (CA) and chlorogenic acid (CG) and azadirachtin (taken as active control), were evaluated against Spodoptera litura Fab. and Achaea janata L. (Lep., Noctuidae). The structure of CME was determined on the basis of extensive spectroscopic (UV, FTIR, 1H, and 13C NMR) data analysis. CME has exhibited strong feeding deterrent activity against S. litura and A. janata larvae with ED50 values of 52.02 and 41.02 μg/cm2 leaf area, respectively. CA and CG were relatively less effective compounds when compared with CME. The results also revealed that the isolated compound CME caused marked larval growth inhibition in S. litura and A. janata larvae after 7 days of feeding on a treated diet. The effect on growth of larvae was concomitant with the reduced feeding and digestibility of ingested food. So the activities of digestive proteases within the midgut of larvae were examined using specific substrates to understand the digestive physiology in the larval guts. The bulk of the activity was associated with serine proteases comprising trypsin-, chymotrypsin-, and elastase-like enzymes, which decreased in diets containing CME, whereas, interestingly increased with CG. From the results, we conclude that CME isolated from S. melongena fruit extract shows feeding deterrent and larval development inhibitory activities that may prove useful in the management of S. litura and A. janata larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ahmad M, Sayyed AH, Saleem MA (2008) Evidence for field evolved resistance to newer insecticides in Spodoptera litura (Lepidoptera: Noctuidae) from Pakistan. Crop Prot 27:1367–1372

    Article  CAS  Google Scholar 

  • Ali SS, Talaey MP, Rane AE (1999) Helicoverpa armigera (Hub.) and Spodoptera litura (Fab.) on flowering plants around Nagpur district. Insect Environ 5:1–28

    Google Scholar 

  • Appel HM (1993) Phenolics in ecological interactions: the importance of oxidation. J Chem Ecol 19(7):1521–1552

    Article  CAS  Google Scholar 

  • Applebaum SW (1985) Biochemistry of digestion. In: Kerkot GA, Gilbert LI (eds) Comprehensive insect physiology: biochemistry and pharmacology, vol 4. Pergamon Press, New York, pp 279–311

  • Belles X, Camps F, Coll J, Piulachs MD (1985) Insect antifeedant activity of Clerodane diterpenoids against larvae of Spodoptera littoralis (Lepidoptera). J Chem Ecol 11:1439–1445

    Article  CAS  Google Scholar 

  • Beninger CW, Abou-Zaid MM, Kistner ALE (2004) A flavanone and two phenolic acids from Chrysanthemum morifolium with phytotoxic and insect growth regulating activity. J Chem Ecol 30:589–606

    Article  PubMed  CAS  Google Scholar 

  • Berenbaum MR (1995) The chemistry of defense: theory and practical. Proc Natl Acad Sci USA 92:2–8

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein–dye-binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Broadway RM (1997) Dietary regulation of serine proteinases that are resistant to serine proteinase inhibitors. Insect Biochem Mol Biol 43:855–874

    CAS  Google Scholar 

  • Broadway RM, Duffey SS (1986) Plant proteinase inhibitors: mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J Insect Physiol 32:827–833

    Article  CAS  Google Scholar 

  • Brousseau R, Masson L, Hegedus D (1999) Insecticidal transgenic plants: are they irresistible? CAB International, Wallingford, p 22

  • Cespedes CL, Calderon JS, Lina L, Aranda E (2000) Growth inhibitory effects on fall armyworm Spodoptera frugiperda of some limonoids isolated from Cedrela spp. (Meliaceae). J Agric Food Chem 48:1903–1908

    Article  PubMed  CAS  Google Scholar 

  • Champagne O, Koul M, Isman Scudder GGE, Towers GGE (1992) Biological activity of limonoids from Rutales. Phytochemistry 31:377–394

    Article  CAS  Google Scholar 

  • Chapman RF, Bernays EA (1989) Insect behavior at the leaf surface and learning as aspects of host plant selection. Cell Mol Life Sci 45:215–222. doi:10.1007/BF01951806

    Article  Google Scholar 

  • Christeller JT, Laing WA, Marckwick NP, Burgess EPJ (1992) Midgut protease activities in 12 phytophagous lepidopteran larvae: dietary and protease inhibitor interactions. Insect Biochem Mol Biol 22:735–746

    Article  CAS  Google Scholar 

  • Devanand P, Usha Rani P (2008) Biological potency of certain plant extracts in management of two lepidopteran pests of Ricinus communis L. J Biopest 1(2):170–176

    Google Scholar 

  • Ding H, Lamb RJ, Ames N (2000) Inducible production of phenolic acids in wheat and antibiotic resistance to Sitodiplosis mosellana. J Chem Ecol 26:969–985

    Article  CAS  Google Scholar 

  • El-Aswad AF, Abdelgaleil SAM, Nakatani M (2003) Feeding deterrent and growth inhibitory properties of limonoids from Khaya senegalensis against the cotton leafworm, Spodoptera littoralis. Pest Manag Sci 60:199–203

    Article  Google Scholar 

  • Elliger CA, Wong Y, Chan BG, Waiss AC Jr. (1981) Growth inhibitors in tomato (Lycopersion) to tomato fruitworm (Heliothis zea). J Chem Ecol 7:753–758. doi:10.1007/BF00990307

    Google Scholar 

  • Erlanger B, Kokowsky N, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278

    Article  PubMed  CAS  Google Scholar 

  • Felton GW, Donato K, Del Vecchio RJ, Duffey SS (1989) Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. J Chem Ecol 15:2667–2694. doi:10.1007/BF01014725

    Article  CAS  Google Scholar 

  • Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, London 318

    Google Scholar 

  • Gandhi GR, Ignacimuthu S, Paulraj MG, Sasikumar P (2011) Antihyperglycemic activity and antidiabetic effect of methyl caffeate isolated from Solanum torvum Swartz. fruit in streptozotocin induced diabetic rats. Eur J Pharm 670:623–631

    Google Scholar 

  • Garcia-Olmedo F, Salcedo F, Sanchez-Monge R, Gomez L, Royo J, Carbonero P (1987) Plant proteinaceous inhibitors of proteinases and a-amylases. Oxf Surv Plant Mol Cell Biol 4:275–334

    CAS  Google Scholar 

  • Gatehouse AMR, Davidson GM, Newell CA, Merryweather A, Hamilton WDO, Burgess EPJ, Gilbert RJC, Gatehouse JA (1997) Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: growth room trials. Mol Breed 3:49–63

    Article  CAS  Google Scholar 

  • Gencsoylu I (2009) Effect of plant growth regulators on agronomic characteristics, lint quality, pests, and predators in cotton. J Plant Growth Regul 28:147–153

    Article  CAS  Google Scholar 

  • Ghumare SS, Mukherjee SN (2003) Performance of S. litura on different host plants: influence of nitrogen and total phenolics and plants on midgut esterases activity. Ind J Exp Biol 41:895–899

    CAS  Google Scholar 

  • Harborne JB (1982) Introduction to ecological biochemistry, 2nd edn. Academic Press, New York

    Google Scholar 

  • Harborne JB (1988) Introduction to ecological biochemistry, 3rd edn. Academic press, London

    Google Scholar 

  • Harborne JB (1994) Do natural plant phenols play a role in ecology. Acta Hortic 381:36–45

    CAS  Google Scholar 

  • Houseman JG, Downe AER, Philogene BJR (1989) Partial characterization of proteinase activity in the larval midgut of the European corn borer, Ostrinia nubilalis Hubner (Lepidoptera: Pyralidae). Can J Zool 67:864–868

    Article  CAS  Google Scholar 

  • Huang MT, Ferraro T (1992) Phenolic compounds in food and cancer prevention. Phenolic compounds in food and their effects on health. II. Antioxidants and cancer prevention. American Chemical Society, Washington, DC, pp 8–34

    Google Scholar 

  • Hymavathi A, Devanand P, Suresh Babu K, Sreelatha T, Usha Rani P, Madhusudana Rao J (2011) Vapor-phase toxicity of Derris scandens Benth. Derived constituents against four stored-product pests. J Agric Food Chem 59(5):1653–1657. doi:10.1021/jf104411h

    Google Scholar 

  • Isman M (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and in increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  PubMed  CAS  Google Scholar 

  • Isman MB, Duffey SS (1982) Toxicity of tomato phenolic compounds to the fruitworm, Heliothis zea. Entomol Exp Appl 31:370–376

    Article  CAS  Google Scholar 

  • Jagannadh V, Nair V (1992) Azadirachtin-induced effects on larval-pupal transformation of Spodoptera mauritia. Physiol Entomol 17:56–61

    Article  Google Scholar 

  • Jongsma MA, Stiekema WJ, Bosch D (1996) Combating inhibitor-insensitive proteases of insect pests. Trend Biotechnol 14:331–333

    Article  CAS  Google Scholar 

  • Khan R (1979) Solanum melongena and its ancestral forms. In: Hawkes J, Lester RN, Skelding AD (eds) The biology and taxonomy of Solanaceae. Academic Press, London, pp 629–636

    Google Scholar 

  • Kubo I (2006) New concept to search for alternate insect control agents from plants. In: Rai M, Carpinella M (eds) Naturally occurring bioactive compounds, vol 3. Elsevier, Amsterdam, pp 61–80. doi:10.1016/S1572-557X(06)03004-2

  • Kumari KGN, Balachandran J, Aravind S, Ganesh MR (2003) Antifeedant and growth inhibitory effects of some neo-Clerodane diterpenoids isolated from Clerodendron species (Verbenaceae) on Earias vitella and Spodoptera litura. J Agric Food Chem 51:1555–1559

    Article  CAS  Google Scholar 

  • Lawrence PK, Koundal KR (2002) Plant protease inhibitors in control of phytophagous insects. Electron J Biotechnol 5:93–109

    Article  Google Scholar 

  • Lin S, Binder F, Hart ER (1998) Chemical ecology of cottonwood leaf beetle adult feeding preferences on Populus. J Chem Ecol 24(11):1791–1802

    Article  CAS  Google Scholar 

  • Marchetti S, Chiaba C, Chiesa F, Bandiera A, Pitotti A (1998) Isolation and partial characterization of two trypsins from the larval midgut of Spodoptera littoralis (Boisduval). Insect Biochem Mol Biol 28:449–458

    Article  CAS  Google Scholar 

  • Molgaard P, Ravn H (1988) Evolutionary aspects of caffeoyl ester distribution in dicotyledons. Phytochemistry 27:2411–2421

    Article  CAS  Google Scholar 

  • Ness AR, Powles JW (1997) Fruit and vegetables, and cardiovascular disease: a review. Int J Epidemiol 26:1–13

    Article  PubMed  CAS  Google Scholar 

  • Rao PJ, Subrahmanyam B (1987) Effect of azadirachtin on Achaea janata L. and Spodoptera litura (F.) (Noctuidae: Lepidoptera). J Entomol Res 11:166–169

    CAS  Google Scholar 

  • Rhoades DF (1979) Evaluation of plant chemical defense against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interactions with secondary plant metabolites. Academic Press, New York, pp 3–54

    Google Scholar 

  • Schoonhoven L, Jermy T, Van Loon J (1998) Insect-plant biology. Chapman & Hall, London

    Book  Google Scholar 

  • Sreelatha T, Hymavathi A, Suresh Babu K, Murthy JM, Usha Rani P, Madhusudana Rao J (2009) Synthesis and insect antifeedant activity of plumbagin derivatives with the amino acid moiety. J Agric Food Chem 57:6090–6094

    Google Scholar 

  • Sreelatha T, Hymavathi A, Rama Subba Rao V, Devanand P, Usha Rani P, Madhusudana Rao J, Suresh Babu K (2010) A new benzil derivative from Derris scandens: structure–insecticidal activity study. Bioorg Med Chem Lett 20:549–553

  • Stamp NE, Temple M, Traugott MS, Wilkens RT (1994) Temperature allelochemical interactive effects on performance of Manduca sexta caterpillars. Entomol Exp Appl 73:199–210

    Article  Google Scholar 

  • Sudheesh S, Presanna Kumar G, Vijaya Kumar S, Vijayalashmi NR (1997) Hypolipidemic effect of flavonoids from Solanum melongena. Plant Foods Hum Nutr 51:321–330

    Article  PubMed  CAS  Google Scholar 

  • Tamayo MC, Rufat M, Bravo JM (2000) Accumulation of a maize proteinase inhibitor in response to wounding and insect feeding, and characterization of its activity toward digestive proteinases of Spodoptera littoralis larvae. Planta 211(1):62–71

    Article  PubMed  CAS  Google Scholar 

  • Terra WR, Ferreira C (1994) Insect digestive enzymes: properties, compartmentalization and function. Comp Biochem Physiol 109:1–62. doi:10.1016/0305-0491(94)90141-4

    Article  Google Scholar 

  • Torres P, Avila JG, Romo de Vivar A, Garcia AM, Marin JC, Aranda E, Céspedes CL (2003) Antioxidant and insect growth regulatory activities of stilbenes and extracts from Yucca periculosa. Phytochemistry 64:463–473

    Article  PubMed  CAS  Google Scholar 

  • Usha Rani P, Devanand P (2011) Influence of plant extracts on the development of cluster caterpillar Spodoptera litura Fab. and castor semilooper, Achaea janata L. on castor crop. Hexapoda 18(1):28–29

  • Usha Rani P, Venkateshwaramma T, Devanand P (2011) Bioactivities of Cocos nucifera L. (Arecales: Arecaceae) and Terminalia catappa L. (Myrtales: Combretaceae) leaf extracts as post-harvest grain protectants against four major stored product pests. J Pest Sci 84(2):235–247

  • Wheeler DA, Isman MB, Vindas SPE, Anderson JT (2001) Screening of Costarican Trichilia species for biological activity against the larvae of Spodoptera litura (Lepidoptera: Noctuidae). Biochem Syst Ecol 29:347–358

    Article  PubMed  CAS  Google Scholar 

  • Whitaker BD, Stommel JR (2003) Distribution of hydroxycinnamic acid conjugates in fruit of commercial eggplant (Solanum melongena L.) cultivars. J Agric Food Chem 51(11):3448–3454. doi:10.1021/jf026250b

    Google Scholar 

  • Xiang M, Su H, Hu J, Yan Y (2011) Isolation, identification and determination of methyl caffeate, ethyl caffeate and other phenolic compounds from Polygonum amplexicaule var. sinense. J Med Plants Res 5(9):1685–1691

    Google Scholar 

  • Yang Y, Stamp NE, Osier TL (1996) Effects of temperature, multiple allelochemicals and larval age on the performance of a specialist caterpillar. Entomol Exp Appl 79:335–344

    Article  Google Scholar 

  • Zapata N, Budia F, Vinuela E, Medina P (2009) Antifeedant and growth inhibitory effects of extracts and drimanes of Drimys winteri stem bark against Spodoptera littoralis (Lep., Noctuidae). Ind Crop Prod 30:119–125

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support provided by the Department of Science and Technology (DST), New Delhi, and are grateful to Dr. J.S. Yadav, Director, Indian Institute of Chemical Technology, Hyderabad, for encouragement and providing the necessary facilities, and to Vegetable Section, Acharya N. G. Ranga Agricultural University, Rajendra Nagar, Hyderabad for the providing the plant material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Usha Rani.

Additional information

Communicated by M. B. Isman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rani, P.U., Devanand, P. Bioactivities of caffeic acid methyl ester (methyl-(E)-3-(3,4-dihydroxyphenyl)prop-2-enoate): a hydroxycinnamic acid derivative from Solanum melongena L. fruits. J Pest Sci 86, 579–589 (2013). https://doi.org/10.1007/s10340-013-0516-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-013-0516-8

Keywords