Skip to main content
Log in

Efficacy of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) against the chive gnat, Bradysia odoriphaga

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Chive gnat, Bradysia odoriphaga Yang & Zhang (Diptera: Sciaridae), is the most serious pest of Chinese chive, Allium tuberosum. The present study aimed at determining the biocontrol potential of different indigenous entomopathogenic nematode (EPN) isolates for the management of chive gnat in China. The virulence of 145 EPN isolates belonging to 13 species against B. odoriphaga was evaluated in the laboratory, and then the most promising isolates (Steinernema ceratophorum HQA-87; S. hebeiense JY-82; S. feltiae JY-90, JY-17; S. litorale HXY-68; Heterorhabditis indica ZZ-68; H. bacteriophora NY-63, HQ-94; and H. megidis LFS-10) were selected for further experiments. The mortality of fourth instar B. odoriphaga was significantly affected by nematode isolates and concentrations of infective juveniles (IJ). Third and fourth instars of B. odoriphaga were generally more susceptible to the nematodes than first and second instars and pupae. Pot experiments showed no differences in B. odoriphaga population reduction at 50 and 75 IJ/cm2 of different isolates; the tested isolates caused a 78–94 % reduction of the chive gnat population at an application rate of 75 IJ/cm2. In a field experiment, S. feltiae JY-90 generated the strongest pest suppression 14 days after EPN application, whereas after 28 days pest densities in the plots treated with S. feltiae JY-17 and S. hebeiense JY-82 were similar to those in plots treated with phoxim and yielded significant reductions of the B. odoriphaga populations. Our findings indicate that EPN may have good potential for use in the integrated management of B. odoriphaga populations in Chinese chive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott WS (1925) A method for computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  • Bedding RA, Akhurst RJ (1975) A simple technique for the detection of insect parasitic rhabditid nematodes in soil. Nematologica 21:109–110

    Article  Google Scholar 

  • Dang Z, Dong J, Gao Z, Jia H, Zhang K, Pan W (2001) Biology and injury of Bradysia odoriphaga on leek in different types of cultivation. J Agric Univ Hebei 24:65–68

    Google Scholar 

  • Ehlers R-U (1996) Current and future use of nematodes in biocontrol: practice and commercial aspects in regard to regulatory policies. Biocontrol Sci Technol 6:303–316

    Article  Google Scholar 

  • Gao Z, Dang Z, Pan W, Jia H, Zhang K (2000) Sensitivity of Bradysia odoriphaga in various places in Hebei province to some insecticides. Chin J Pesticide Sci 4:88–90

    Google Scholar 

  • Glazer I, Navon A (1990) Activity and persistence of entomoparasitic nematodes tested against Heliothis armigera (Lepidoptera: Noctuidae). J Econ Entomol 83:1795–1800

    Google Scholar 

  • Gouge DH, Hague NGM (1995) Glasshouse control of fungus gnats, Bradysia paupera, on fuchsias by Steinernema feltiae. Fund Appl Nematol 18:77–80

    Google Scholar 

  • Grewal P (2000) Mushroom pests. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Kluwer Academic Publishers, Dordrecht, pp 497–503

    Chapter  Google Scholar 

  • Grewal PS, Selvan S, Gaugler R (1994) Thermal adaptation of entomopathogenic nematodes: niche breadth for infection, establishment, and reproduction. J Therm Biol 19:245–253

    Article  Google Scholar 

  • Grewal PS, Ehlers R-U, Shapiro-Ilan DI (2005) Critical issues and research needs for expanding the use of nematodes in biocontrol. In: Grewal PS, Ehlers R-U, Shapiro-Ilan DI (eds) Nematodes as biocontrol agents. CABI, New York, pp 479–490

    Chapter  Google Scholar 

  • Gutiérrez C, Campos-Herrera R, Jiménez J (2008) Comparative study of the effect of selected agrochemical products on Steinernema feltiae (Rhabditida: Steinernematidae). Biocontrol Sci Technol 18:101–108

    Article  Google Scholar 

  • Harris MA, Oetting RD, Gardner WA (1995) Use of entomopathogenic nematodes and a new monitoring technique for control of fungus gnats, Bradysia coprophila (Diptera: Sciaridae), in floriculture. Biol Control 5:412–418

    Article  Google Scholar 

  • Hazir S, Stock SP, Kaya HK, Koppenhöfer AM, Keskin N (2002) Developmental temperature effects on five geographic isolates of the entomopathogenic nematode Steinernema feltiae (Nematoda: Steinernematidae). J Invertebr Pathol 77:243–250

    Article  Google Scholar 

  • Head J, Walters KFA, Langton S (2000) The compatibility of the entomopathogenic nematode, Steinernema feltiae, and chemical insecticides for the control of the South American leafminer, Liriomyza huidobrensis. Biocontrol 45:345–353

    Article  CAS  Google Scholar 

  • Hominick WM (2002) Biogeography. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, Wallingford, pp 115–143

    Chapter  Google Scholar 

  • Imahori Y, Suzuki Y, Uemura K, Kishioka I, Fujiwara H, Ueda Y, Chachin K (2004) Physiological and quality responses of Chinese chive leaves to low oxygen atmospheres. Postharvest Biol Technol 31:295–303

    Article  CAS  Google Scholar 

  • Jagdale GB, Casey ML, Grewal PS, Lindquist RK (2004) Application rate and timing, potting medium and host plant effects on the efficacy of Steinernema feltiae against the fungus gnat, Bradysia coprophila, in floriculture. Biol Control 29:296–305

    Article  Google Scholar 

  • Jagdale GB, Casey ML, Canas L, Grewal PS (2007) Effect of entomopathogenic nematode species, split application and potting medium on the control of the fungus gnat, Bradysia difformis (Diptera: Sciaridae), in the greenhouse at alternating cold and warm temperatures. Biol Control 43:23–30

    Article  Google Scholar 

  • Kaya HK, Aguillera MM, Alumai A et al (2006) Status of entomopathogenic nematodes and their symbiotic bacteria from selected countries or regions of the world. Biol Control 38:134–155

    Article  Google Scholar 

  • Khatri-Chhetri HB, Timsina GP, Manandhar HK, Moens M (2011) Potential of Nepalese entomopathogenic nematodes as biocontrol agents against Holotrichia longipennis Blanch. (Coleoptera: Scarabaeidae). J Pest Sci 84:457–469

    Article  Google Scholar 

  • Kim HH, Choo HY, Kaya HK, Lee DW, Lee SM, Jeon HY (2004) Steinernema carpocapsae (Rhabditida: Steinernematidae) as a biological control agent against the fungus gnat Bradysia agrestis (Diptera: Sciaridae) in propagation houses. Biocontrol Sci Technol 14:171–183

    Article  Google Scholar 

  • Koppenhöfer AM, Fuzy EM (2004) Effect of white grub developmental stage on susceptibility to entomopathogenic nematodes. J Econ Entomol 97:1842–1849

    Article  PubMed  Google Scholar 

  • Koppenhöfer AM, Fuzy EM (2008) Effect of the anthranilic diamide insecticide, chlorantraniliprole, on Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae) efficacy against white grubs (Coleoptera: Scarabaeidae). Biol Control 45:93–102

    Article  Google Scholar 

  • Koppenhöfer AM, Campbell JF, Kaya HK, Gaugler R (1998) Estimation of entomopathogenic nematode population density in soil by correlation between bait insect mortality and nematode penetration. Fund Appl Nematol 21:95–102

    Google Scholar 

  • Li HJ, He XK, Zeng AJ, Liu YJ, Jiang SR (2007a) Bradysia odoriphaga copulatory behavior and evidence of a female sex pheromone. J Agric Urban Entomol 24:27–34

    Article  Google Scholar 

  • Li CJ, Xu YL, Wang Y, Liu CZ, Qian XJ (2007b) Evaluation of the effects of different methods on the quality of entomopathogenic nematodes. Plant Prot 5:88–91

    Google Scholar 

  • Ma J, Chen SL, Zou YX, Li HX, Han RC, De Clercq P, Moens M (2010) Natural occurrence of entomopathogenic nematodes in north China. Russ J Nematol 18:117–126

    Google Scholar 

  • Ma J, Chen SL, Li HX, Han RC, Khatri-Chhetri HB, De Clercq P, Moens M (2012a) A new entomopathogenic nematode, Steinernema tielingense n. sp. Rhabditida: Steinernematidae), from north China. Nematology 14:321–338

    Article  Google Scholar 

  • Ma J, Chen SL, De Clercq P, Waeyenberge L, Han RC, Moens M (2012b) A new entomopathogenic nematode, Steinernema xinbinense n. sp. (Rhabditida: Steinernematidae), from north China. Nematology 14:723–739

    Article  CAS  Google Scholar 

  • Ma J, Chen S, De Clercq P, Han R, Moens M (2012c) Steinernema changbaiense n. sp. (Rhabditida: Steinernematidae), a new species of entomopathogenic nematode from Northeast China. Russ J Nematol 20(2):97–112

    Google Scholar 

  • Mei ZX, Wu QJ, Zhang YJ, Hua L (2003) The biology, ecology and management of Bradysia odoriphaga. Entomol Knowl 40:396–398

    Google Scholar 

  • Millar LC, Barbercheck ME (2001) Interaction between endemic and introduced entomopathogenic nematodes in conventional-till and no till corn. Biol Control 22:235–245

    Article  Google Scholar 

  • Morton A, García-Del-Pino F (2008) Field efficacy of the entomopathogenic nematode Steinernema feltiae against the Mediterranean flat-headed rootborer Capnodis tenebrionis. J Appl Entomol 132:632–637

    Article  Google Scholar 

  • Sirjani FO, Lewis EE, Kaya HK (2009) Evaluation of entomopathogenic nematodes against the olive fruit fly, Bactrocera oleae (Diptera: Tephritidae). Biol Control 48:274–280

    Article  Google Scholar 

  • Sun RH, Li AH (2007) Studies on combination effect of entomopathogenic nematode H06 and insecticide against Bradysia odoriphaga. Chin J Pestic Sci 9:66–70

    Google Scholar 

  • Sun RH, Li AH, Han RC, Cao L, Liu XL (2004) Factors affecting the control of Bradysia odoriphaga with entomopathogenic nematode Heterorhabditis indica LN2. Nat Enem Insects 26(4):150–155

    Google Scholar 

  • Susurluk A, Ehlers RU (2008) Field persistence of the entomopathogenic nematode Heterorhabditis bacteriophora in different crops. Biocontrol 53:627–641

    Article  Google Scholar 

  • Wang HX, Sha Y, Sun JT, Sun JZ (2006) A report of food poisoning by consuming of organophosphate pesticide contaminated vegetable. Occup Health 22:512–513

    Google Scholar 

  • Woodring JL, Kaya HK (1988) Steinernematid and Heterorhabditid nematodes: a handbook of techniques. Southern Cooperative Series Bulletin 331. Arkansas Agricultural Experiment Station, Fayetteville, Arkansas, pp 1–30

  • Xu CX, De Clercq P, Moens M, Chen SL, Han RC (2010) Efficacy of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) against the striped flea beetle, Phyllotreta striolata. Biocontrol 55:789–797

    Article  Google Scholar 

  • Yang HW, Zhang GY (1990) Infectivity of the entomopathogenic nematode, Heterorhabditis sp. D1 to Bradysia odoriphaga (Dip.: Mycetophilidae). Chin J Biol Control 6(3):110–112

    Google Scholar 

  • Yang XF, Jian H, Yang HW, Liu Z, Yuan J (2004) Using entomopathogenic nematodes for control of chive maggot, Bradysia odoriphaga Yang et Zhang. Acta Phytophyl Sin 31:33–37

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Vlaamse Interuniversitaire Raad-University Development Co-operation (VLIR-UOS), Belgium, through project ENCHIBE (No. ZEIN2007 PR339) and by the China Agriculture Research System (CARS-11-B-08) and A2012120103. We appreciate the assistance of Ms. Wang Jingyue, Xiuhua Li, and Nancy de Sutter in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Ma or Patrick De Clercq.

Additional information

Communicated by R.-U. Ehlers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J., Chen, S., Moens, M. et al. Efficacy of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) against the chive gnat, Bradysia odoriphaga . J Pest Sci 86, 551–561 (2013). https://doi.org/10.1007/s10340-013-0497-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-013-0497-7

Keywords

Navigation