Skip to main content
Log in

A laboratory study on the activity of Steinernema feltiae (Rhabditida: Steinernematidae) Rioja strain against horticultural insect pests

  • Short Communication
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

The potential of the entomopathogenic nematode Steinernema feltiae (Filipjev) (Rhabditida: Steinernematidae) Rioja strain was assessed under laboratory conditions. Last instar larvae of Leptinotarsa decemlineata Say (Coleptera: Chrysomelidae), Spodoptera littoralis Boisdouval (Lepidoptera: Noctuidae) and Trichoplusia ni Hübner (Lepidoptera: Noctuidae) were exposed to infective juveniles (IJs) under laboratory conditions. Larval mortality, days to larval death, infection cycle length, and reproductive potential were recorded. Efficacy was assessed performing dose–response experiments. The results indicate that control of L. decemlineata with S. feltiae Rioja strain is not economically profitable (LC50 = 99.61 IJs/cm2), whereas results obtained for T. ni (LC50 = 0.27 IJs/cm2) are promising. Due to the life cycle of this insect, the efficacy needs to be investigated in foliar application studies. The effects on S. littoralis (LC50 = 0.69 IJs/cm2) was considered the most suitable for development of the Rioja strain as a biocontrol agent for soil application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Abbas MST, Saleh MME (1998) Comparative pathogenicity of Steinernema abbasi and Steinernema riobrave to Spodoptera littoralis (Lepidoptera: Noctuidae). Int J Nematol 8:43–45

    Google Scholar 

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–276

    CAS  Google Scholar 

  • Abdel-Razek A (2006) Infectivity prospects of both nematodes and bacterial symbionts against cotton leafworm, Spodoptera littoralis (Biosduval) (Lepidoptera: Noctuidae). J Pest Sci 79:11–15. doi:10.1007/s10340-005-0103-8

    Article  Google Scholar 

  • Adams BJ, Fodor A, Koppenhöfer HS, Stackenbrandt E, Stock SP, Klein MG (2006) Biodiversity and systematic of nematode–bacterium entomopathogens. Biol Control 37:32–49. doi:10.1016/j.biocontrol.2005.11.008

    Article  Google Scholar 

  • Armer CA, Berry RE, Reed GL, Jepsen SJ (2004a) Colorado potato beetle control by application of the entomopathogenic nematode Heterorhabditis marelatus and potato plant alkaloid manipulation. Entomol Exp Appl 111:47–58. doi:10.1111/j.0013-8703.2004.00152.x

    Article  Google Scholar 

  • Armer CA, Rao S, Berry RE (2004b) Insect cellular and chemical limitations to pathogen development: the Colorado potato beetle, the nematode Heterorhabditis marelatus, and its symbiontic bacteria. J Invertebr Pathol 87:114–122

    PubMed  CAS  Google Scholar 

  • Bedding RA, Molyneux AS, Akhurst RJ (1983) Heterorhabditis spp., Neoaplectana spp., and Steinernema kraussei: interspecific and intraspecific differences in infectivity for insects. Exp Parasitol 55:249–257. doi:10.1016/0014-4894(83)90019-X

    Article  PubMed  CAS  Google Scholar 

  • Belair G, Fournier Y, Dauphinais N (2003) Efficacy of steinernematid nematodes against three insect pests of crucifers in Quebec. J Nematol 35:259–265

    PubMed  CAS  Google Scholar 

  • Cabello T, González MP, Justicia L, Belda JE (1996) Plagas de Noctuidos (Lep. Noctuidae) y su tecnología en cultivos en invernaderos. Informaciones Técnicas 39796. Consejería de Agricultura y Pesca, Junta de Andalucía, Spain

    Google Scholar 

  • Campos-Herrera R, Escuer M, Robertson L, Gutiérrez C (2006) Morphological and ecological characterization of Steinernema feltiae (Rhabditida: Steinernematidae) Rioja strain, isolated from Bibio hortulanus (Díptera: Bibionidae) in Spain. J Nematol 38:68–75

    PubMed  CAS  Google Scholar 

  • Dowds BCA, Peters A (2002) Virulence mechanisms. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, Wallinford, pp 79–98

    Google Scholar 

  • Ferre J, van Rie J (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 47:501–533. doi:10.1146/annurev.ento.47.091201.145234

    Article  PubMed  CAS  Google Scholar 

  • Glazer I, Lewis EE (2000) Bioassays for entomopathogenic nematodes. In: Navon A, Ascher KRS (eds) Bioassays of entomopathogenic microbes and nematodes. CAB International, Oxon, pp 229–247

    Google Scholar 

  • Glazer I, Galper S, Sharon E (1991) Virulence of the nematode (Steinernema and Heterorhabditis)–Bacteria (Xenorhabdus) complex to the Egyptian cotton leafworm Spodoptera littoralis (Lepidoptera: Noctuidae). J Invertebr Pathol 57:94–100. doi:10.1016/0022-2011(91)90045-R

    Article  Google Scholar 

  • Glazer I, Klein M, Navon A, Nakache Y (1992) Comparison of efficacy of entomopathogenic nematodes combined with antidesiccants applied by canopy sprays against three cotton pests (Lepidoptera: Noctuidae). J Econ Entomol 85:1636–1641

    Google Scholar 

  • Grewal PS (2002) Formulation and application technology. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, Wallinford, pp 265–287

    Google Scholar 

  • Gutiérrez C, Campos-Herrera R, Jiménez J (2008) Comparative study of the effect of selected agrochemical products on Steinernema feltiae (Rhabditida: Steinernematidae). Biocontrol Sci Technol 18:101–108. doi:10.1080/09583150701684267

    Article  Google Scholar 

  • Kaya HK, Aguillera MM, Alumai A, Choo HY, de la Torre M, Fodor A, Ganguly S, Hazâr S, Lakatos T, Pye A, Wilson M, Yamanaka S, Yang H, Ehlers RU (2006) Status of entomopathogenic nematodes and their symbiotic bacteria from selected countries or regions of the world. Biol Control 38:134–155. doi:10.1016/j.biocontrol.2005.11.004

    Article  Google Scholar 

  • MAPA (2007) Integrated production. In: Ministry of Agriculture, Fisheries and Food. Technical Secretariat General (ed) The Spanish agrifood sector and rural environment: facts and figures (8th edn, revised, updated and expanded). Ministry of Agriculture, Fisheries and Food. Technical Secretariat General, Madrid, Spain, pp 124–126

  • Navon A, Nagalakshmi VK, Levski S, Salame L, Glazer I (2002) Effectiveness of entomopathogenic nematodes in an alginate gel formulation against lepidopterous pest. Biocontrol Sci Technol 12:737–746. doi:10.1080/0958315021000039914

    Article  Google Scholar 

  • OEPP/EPPO (2006) EPPO alert list from http://www.eppo.org/QUARANTINE/quarantine.htm. (date of revision: 15 September 2007)

  • Pérez-Marín JL (2007) Incidencia de plagas y enfermedades en las comunidades autónomas en 2006: La Rioja. Phytoma 188:38–41

    Google Scholar 

  • Phan KL, Tirry L, Moens M (2005) Pathogenic potential of six isolates of entomopathogenic nematodes (Rhabditida: Steinernematidae) from Vietnam. Biocontrol 50:477–491

    Article  Google Scholar 

  • Poitout S, Bues R (1974) Elevage des chenilles Noctuidae et deux espèces d’Arctiidae sur milieu artificiel simple. Ann Zool Ecol Anim 6:431–441

    Google Scholar 

  • Shaaban AM, Aboelghar MR, Abdelmohymen MR, Elmalla MA (1985) Resistance of the Egyptian cotton leafworm, Spodoptera littoralis (Boisd), to certain insecticides. J Plant Dis Prot 92:69–75

    CAS  Google Scholar 

  • Shapiro-Ilan DI, Gouge DH, Piggott SJ, Fife JP (2006) Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Biol Control 38:124–133. doi:10.1016/j.biocontrol.2005.09.005

    Article  Google Scholar 

  • Thurston GS, Yule WN, Dunphy GB (1994) Explanations for the low susceptibility of Leptinotarsa decemlineata to Steinernema carpocapsae. Biol Control 4:53–58. doi:10.1006/bcon.1994.1010

    Article  Google Scholar 

  • White GF (1927) A method for obtaining infective nematode larvae from cultures. Science 66:302–303. doi:10.1126/science.66.1709.302-a

    Article  PubMed  Google Scholar 

  • Woodring JL, Kaya HK (1988) Steinernematid and heterorhabditid nematodes: a handbook of biology and techniques. Southern Cooperative Series Bulletin 331. Arkansas Agricultural Experiment Station, Arkansas

  • Wright RJ, Agudelo-Silva F, Georgis R (1987) Soil applications of steinernematid and heterorhabditid nematodes for control of Colorado potato beetle, Leptinotarsa decemlineata (Say). J Nematol 19:201–206

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the editors and three anonymous reviewers for their suggestions and comments which strongly improved the earlier manuscript. We thank Dr. A. Fereres from Centro de Ciencias Medioambientales CSIC (Spain) for providing insect species T. ni, J. Jiménez for technical support, Dr. L. Barrios for statistical advise, and Dr. A. Piedra Buena for their comments and English correction of the manuscript. We thank J. Ochoa for the crop support in its field. This research was supported by Ministerio de Educación y Ciencia (Grants: DGL–2005–07661/BOS), Unión de Agricultores y Ganaderos de La Rioja–Coordinadora de Agricultores y Ganaderos (UAGR–COAG) (Grant: 2001/2001250) and Ministerio de Educación, Cultura y Deportes (FPU predoctoral scholarship). This paper was based on selected data from Ph.D. thesis by R. Campos Herrera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Gutiérrez.

Additional information

Communicated by R.-U. Ehlers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos-Herrera, R., Gutiérrez, C. A laboratory study on the activity of Steinernema feltiae (Rhabditida: Steinernematidae) Rioja strain against horticultural insect pests. J Pest Sci 82, 305–309 (2009). https://doi.org/10.1007/s10340-009-0247-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-009-0247-z

Keywords

Navigation