Skip to main content
Log in

Identification of predator–prey relationships between coccinellids and Saissetia oleae (Hemiptera: Coccidae), in olive groves, using an enzyme-linked immunosorbent assay

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

A polyclonal antiserum (AS) was developed and characterized for the detection of immature stages of the black-scale, Saissetia oleae, in whole body homogenized field-collected coccinellid species, using an indirect enzyme-linked immunosorbent assay (ELISA). The indirect ELISA showed to be sensitive to the S. oleae AS, detecting a protein content between 0.118 and 0.0374 μg mL−1. The specificity of the ELISA was tested by assaying a range of sympatric predators and alternative preys with the S. oleae AS. Coccinellid larvae obtained the highest cross-reaction and a positive–negative threshold was established at 0.674 μg mL−1 protein. A total of 1,322 coccinellids were field-collected in three olive groves located in Trás-os-Montes (northeast of Portugal) by the beating technique and were analyzed to detect S. oleae proteins in their guts. Field-collected coccinellids which attained a S. oleae protein concentration equivalent higher than the threshold were considered as a positive reaction. In the overall collected coccinellids, 21.2% reacted positively with the S. oleae AS. Chilocorus bipustulatus and coccinellid larvae obtained the highest percentages of positives with 43.4 and 40.8%, respectively. The greatest frequency of positive responses occurred at the beginning of July, mid-August, and mid-October coinciding with the occurrence of the first, second and third instar nymphs of S. oleae, respectively. Thus, in this study, the role of coccinellids as natural control agents of S. oleae was highlighted by the number of individuals and species that tested positive for S. oleae AS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Argyriou LC, Katsoyannos P (1977) Coccinellidae species found in the olive-groves of Greece. Ann Inst Phytopathol Benaki 11:331–345

    Google Scholar 

  • Boller EF, Avilla J, Joerg E, Malavolta C, Wijnands FG, Esbjerg P (2004) Integrated production. Principles and technical guidelines, 3rd edn. OILB/WPRS Bull 27:54

  • Fichter BL, Stephen WP (1981) Time related decay in prey antigens ingested by the predator Podisus maculiventris (Hemiptera, Pentatomidae) as detected by ELISA. Oecologia 51:404–407

    Article  Google Scholar 

  • Gomes HB, Cavaco M (2003) Protecção Integrada da Oliveira—Lista dos Produtos Fitofarmacêuticos e Niveis Económicos de Ataque. Ministério da Agricultura, Desenvolvimento Rural e Pescas—Direcção Geral de Protecção da Culturas, Oeiras, Portugal

  • Greenstone MH (1996) Serological analysis of arthropod predation: past, present and future. In: Symondson WOC, Liddell JE (eds) The ecology of agricultural pests. Chapman & Hall, London, pp 265–300

    Google Scholar 

  • Hagler JR (1998) Variation of the efficacy of several predator gut content immunoassays. Biol Control 12:25–32

    Article  Google Scholar 

  • Hagler JR (2006) Development of an immunological technique for identifying multiple predator–prey interactions in a complex arthropod assemblage. Ann Appl Biol 149:153–165

    Article  Google Scholar 

  • Hagler JR, Naranjo SE (1997) Measuring the sensitivity of an indirect predator gut content ELISA: detectability of prey remains in relation to predator species, temperature, time, and meal size. Biol Control 9:112–119

    Article  Google Scholar 

  • Hagler JR, Naranjo SE, Erickson ML, Machtley SA, Wright SF (1997) Immunological examinations of species variability in predator gut content analysis assays: effect of predator: prey ratio on immunoassay sensitivity. Biol Control 9:120–128

    Article  Google Scholar 

  • Harwood JD, Phillips SW, Sunderland KD, Symondson WOC (2001) Secondary predation: quantification of food chain errors in an aphid–spider–carabid system using monoclonal antibodies. Mol Ecol 10:2049–2057

    Article  PubMed  CAS  Google Scholar 

  • Hardwood JD, Sunderland KD, Symondson WOC (2004) Prey selection by limphiid spiders: molecular tracking of the effects of alternative prey on rates of aphid consumption in the field. Mol Ecol 13:3549–3560

    Article  Google Scholar 

  • Hawkes NJ, Janes RW, Hemingway J, Vontas J (2005) Detection of resistance-associated point mutations of organophosphate-insensitive acetylcholinesterase in the olive fruit fly, Bactrocera oleae (Gmelin). Pest Biochem Physiol 81:154–163

    Article  CAS  Google Scholar 

  • Limón F, Meliá A, Blasco J, Moner P (1976) Estudio de la distribución, nível de ataque, parásitos y predadores de las cochilillas (Saissetia oleae Bern. y Ceroplastes sinensis Del Guercio) en los cítricos de la provincia de Castellón. Bol Serv Defensa Contra Plagas Inspección Fitopatol 2:263–276

    Google Scholar 

  • Lozano C, Morris T, Campos M, Pereira JA, Bento A (2002) Detection by ELISA of predators of Prays oleae (Lepidoptera: Plutellidae) in a Portuguese olive orchard. Acta Hortic 586:831–834

    Google Scholar 

  • McIver JD, Tempelis CH (1993) The arthropod predators of ant-mimetic and aposematic prey: a serological analysis. Ecol Entomol 18:218–222

    Article  Google Scholar 

  • Minitab Inc. (2003) MINITAB statistical software, release 14 for windows. State College, Pennsylvania

  • Morris TI, Campos M, Kidd NAC, Symondson WOC (1999) What is consuming Prays oleae (Bernard) (Lep: Yponomeutidae) and when: a serological solution? Crop Prot 18:17–22

    Article  Google Scholar 

  • Naranjo SE, Hagler JR (2001) Toward the quantification of predation with predator gut immunoassays: a new approach integrating functional response behavior. Biol Control 20:175–189

    Article  Google Scholar 

  • Pereira JAC (2004) Bioecologia da cohonilha negra, Saissetia oleae (Olivier), na oliveira, em Trás-os-Montes. PhD thesis, Universidade de Trás-os Montes e Alto Douro, Vila Real

  • Raimundo AAC (1992) Novas espécies de Scymnini para a fauna de coccinelídeos de Portugal. Bol Soc Port Entomol 3:373–384

    Google Scholar 

  • Raimundo AAC, Alves MLG (1986) Revisão dos Coccinelídeos de Portugal. Universidade de Évora, Évora

    Google Scholar 

  • Santos SAP, Pereira JA, Torres L, Nogueira AJA (2007) Evaluation of the effects, on canopy arthropods, of two agricultural management systems to control pests in olive groves from north-east of Portugal. Chemosphere 67:131–139

    Article  PubMed  CAS  Google Scholar 

  • Sheppard SK, Harwood JD (2005) Advances in molecular ecology: tracking trophic links through predator–prey food-webs. Funct Ecol 19:751–762

    Article  Google Scholar 

  • Sopp PI, Sunderland KD, Fenlon JS, Wratten SD (1992) An improved quantitative method for estimating invertebrate predation in the field using an enzyme-linked immunosorbent assay (ELISA). J Appl Ecol 29:295–302

    Article  Google Scholar 

  • Sunderland KD (1996) Progress in quantifying predation using antibody techniques. In: Symondson WOC, Liddell JE (eds) The ecology of agricultural pests. Chapman & Hall, London, pp 419–455

    Google Scholar 

  • Sunderland KD, Crook NE, Stacey DL, Fuller BJ (1987) A study of feeding by polyphagous predators on cereal aphids using ELISA and gut dissection. J Appl Ecol 24:907–933

    Article  Google Scholar 

  • Symondson WOC (2002) Molecular identification of prey in predator diets. Mol Ecol 11:627–641

    Article  PubMed  CAS  Google Scholar 

  • Symondson WOC, Liddell JE (1993) The development and characterization of an anti-haemolymph antiserum for the detection of mollusc remains within carabid beetles. Biocontrol Sci Technol 3:261–275

    Article  Google Scholar 

  • Symondson WOC, Glen DM, Wiltshire CW, Langdon CJ, Liddell JE (1996) Effects of cultivation techniques and methods of straw disposal on predation by Pterostichus melanarius (Coleoptera: Carabidae) upon slugs (Gastropoda: Pulmonata) in an arable field. J Appl Ecol 33:741–753

    Article  Google Scholar 

  • Symondson WOC, Hemingway J (2002) Biochemical and molecular techniques. In: Dent DR, Walton MP (eds) Methods in ecological and agricultural entomology. CAB International, Oxon, pp 293–340

    Google Scholar 

Download references

Acknowledgments

This study was founded by projects—AGRO 236 “Protecção contra pragas em olivicultura biológica” and AGRO 482 “Protecção contra pragas do olival numa óptica de defesa do ambiente e do consumidor”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sónia A. P. Santos.

Additional information

Communicated by M. Traugott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, S.A.P., Pereira, J.A., da Conceição Rodrigues, M. et al. Identification of predator–prey relationships between coccinellids and Saissetia oleae (Hemiptera: Coccidae), in olive groves, using an enzyme-linked immunosorbent assay. J Pest Sci 82, 101–108 (2009). https://doi.org/10.1007/s10340-008-0226-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-008-0226-9

Keywords

Navigation