Journal of Pest Science

, 79:155 | Cite as

Efficacy of modified diatomaceous earth on different cockroach species (Orthoptera, Blattellidae) and silverfish (Thysanura, Lepismatidae)

  • M. K. FauldeEmail author
  • M. Tisch
  • J. J. Scharninghausen
Original Paper


Defined populations of American (Periplaneta americana), German (Blattella germanica), and Oriental (Blatta orientalis) cockroaches, and silverfish (Lepisma saccharina) were observed after exposure to deposits (25 g/m2) of a new 1,1,1–trimethyl-N-trimethylsilane-modified, highly hydrophobic diatomaceous earth (DE) formulation by using a computer-aided device measuring motility, circadian rhythm, and mortality under defined environmental and climatic field-simulating and exposure-enforced conditions. In a humid climate (85% relative humidity) with water and food offered ad libitum, complete population eradication could be achieved on the sixth day against B. germanica, on the eighth day against P. americana, and on the ninth day against L. saccharina, respectively. No population eradication occurred within 10 days of exposure when testing B. orientalis, showing a mean survival rate of 29.4 ± 6.7 % of the populations. When comparing the species-specific mortality rates with the results obtained from corresponding reference control groups, significantly higher mortality rates could be observed in B. germanica (F = 66; df = 52; P < 0.00001), P. americana (F = 344; df =66; P < 0.00001), L. saccharina (F = 253; df = 24; P < 0.00001), and B. orientalis (F = 422; df = 11; P < 0.00001). Overall, the efficacy of the hydrophobised DE examined ranked as follows: B. germanica > P. americana (F = 51; df = 24; P < 0.00001) > L. saccharina (F = 43; df = 24; P < 0.00001) >> B. orientalis (F = 9; df = 15; P < 0.000001). DE exposure resulted in complete disruption of the circadian activity in B. germanica and P. americana, but not when tested against B. orientalis, where the species-specific circadian motility peak was still preserved at lower levels after 10 days of exposure. In contrast to the cockroach species examined, no specific circadian rhythm could be measured in the L. saccharina control and treatment groups. Results indicate that hydrophobised DE originating from freshwater diatoms modified with 1,1,1-trimethyl-N-trimethylsilane can be successfully used for the control of infestations with German and American cockroaches as well as silverfish, but not against Oriental cockroaches. It is concluded that species-specific morphological, physiological and behavioural characteristics of insects influencing DE efficacy as well as the toxicological risk of modified DE to humans deserve further investigation.


Blatta orientalis Blattella germanica Diatomaceous earth Efficacy Lepisma saccharina Periplaneta americana 


  1. Anonymous (2000) Technische Richtlinie für Gefahrstoffe (TRGS) No. 900. Bundesarbeitsblatt 10/2000:34–63Google Scholar
  2. Arthur F (2000) Toxicity of diatomaceous earths to red flour beetles and confused flour beetles (Coleoptera: Tenebrionidae): effects of temperature and relative humidity. J Econ Entomol 93:526–532PubMedCrossRefGoogle Scholar
  3. Chiu SF (1939) Toxicity studies of so-called “inert” materials with the rice weevil and the granary weevil. J Econ Entomol 32(6):810–821Google Scholar
  4. Eastin JL, Burden GS (1960) Tests with five silica dusts against German cockroaches. Fla Entomol 43:99–102CrossRefGoogle Scholar
  5. Ebeling W (1971) Sorptive dusts for pest control. Annu Rev Entomol 16:123–158PubMedCrossRefGoogle Scholar
  6. Eidmann H, Kuehlhorn F (1970) Lehrbuch der Entomologie. Verlag Paul Parey Hamburg, Berlin, pp 45–55Google Scholar
  7. Faulde M, Cavaljuga S, Scharninghausen J (2006) Toxic and behavioural effects of different modified diatomaceous earths on the German cockroach, Blattella germanica (Linneaus) (Orthoptera: Blattellidae) under simulated field conditions. J Stored Prod Res 42(3):253–263CrossRefGoogle Scholar
  8. Fields P (1998) Diatomaceous earth: advantages and limitations. In: Zuxun J, Quan L, Yongsheng L, Xianchang T, Lianghua G (eds) Proceedings of the seventh international working conference of stored products protection. Sichuan Publishing House of Science & Technology, Peoples Republic of China. I, pp 781–789Google Scholar
  9. Fres JF (2005) Orientalische Schabe in Massen: Ausgangspunkt Landwirtschaft. Der praktische Schädlingsbekämpfer 57(9):6–11Google Scholar
  10. Fuchs MEA, Sann G (1981) Eine Versuchsanlage zur Verhaltensanalyse von Schabenpopulationen unter definierten Raumklimabedingungen. GIT Labor-Fachzeitschrift 25:622–629Google Scholar
  11. Lartigue E, Del C, Rossanigo CE (2004) Evaluacion insecticida y antihelmintica de la tierra de diatomea en bovinos. Vet Argent 21:660–674Google Scholar
  12. Le Patourel GNJ, Zhou JJ (1990) Action of amorphous silica dusts on the German cockroach Blattella germanica (Linneaus) (Orthoptera: Blattidae). Bull Entomol Res 80:11–17Google Scholar
  13. Le Patourel GNJ (1996) Forced contact and arena bioassays to assess the performance of a pyretroid WP deposit against oriental cockroaches. Proceedings of the 2nd international conference on insect pests in the urban environment. Edinburgh, UK, 7–10 July 1996, pp. 303–308Google Scholar
  14. Merget R, Bauer T, Kupper HU, Phillippou S, Bauer HD, Breitstadt R, Bruening T (2002) Health hazards due to inhalation of amorphous silica. Arch Toxicol 75:625–634PubMedCrossRefGoogle Scholar
  15. Mewis I, Reichmuth Ch (1998) Diatomaceous earths against the coleoptera: granary weevil Sitophilus granarius (Curculionidae), the confused flour beetle Tribolium confusum (Tenebrionidae), and the Mealworm Tenebrio molitor (Tenebrionidae). In: Zuxun J, Quan L, Yongsheng L, Xianchang T, Lianghua G (eds) Proceedings of the 7th international working conference of stored products protection. Sichuan Publishing House of Science & Technology, Peoples Republic of China. I, pp 765–780Google Scholar
  16. Mewis I, Ulrichs Ch (1999) Wirkungsweise amorpher Diatomeenerden auf vorratsschädliche Insekten. Untersuchung der abrasiven und sorptiven Effekte. J Pestic Sci 72:113–121Google Scholar
  17. Polivka JB (1931) The effect of physiological changes in the corn plant on corn borer survival. J Econ Entomol 24:394–395Google Scholar
  18. Prasantha BDR (2003) Toxicological, biological and physiological effects of diatomaceous earths on the bean weevil Acanthoscelides obtectus (Say) and the cowpea weevil Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Academic dissertation, Berlin, pp. 1–157Google Scholar
  19. Quarles W (1992) Diatomaceous earth for pest control. The IPM Practitioner 14(5/6):1–11Google Scholar
  20. Smith BC (1969) Effect of silica on the survival of Coleomegilla maculata lengi (Coleoptera: Coccinellidae) and Lepinotarsa decemlineata (Coleoptera: Chrysomelidae). Can Entom 101:460–462CrossRefGoogle Scholar
  21. Subramanyam B, Roesli R (2000) Inert dusts. In: Subramanyam B, Hagstrum DW (eds) Alternatives to pesticides in stored-product IPM. Kluwer, Dordrecht, pp. 321–380. ISBN 0–7923–7976–4Google Scholar
  22. Swadener C (1995) Sane cockroach management, Part 2. J Pestic Ref 15:22–23Google Scholar
  23. Tarshis IB (1959) Sorptive dusts on cockroaches. Calif Agric 13:3–5Google Scholar
  24. Tomioka K, Salaheldin A (2004) Circadian organization in hemimetabolous insects. Zoolog Sci 21(12):1153–1162PubMedCrossRefGoogle Scholar
  25. Webb JE (1945) The penetration of Derris through the spiracles and cuticle of Melophagus ovinus, L. Bull Entomol Res 36:15–22CrossRefGoogle Scholar
  26. WHO (1974) FAO/WHO joint expert committee on food additives. In: 17th meeting. world health organisation technical report series no. 539, pp 16–35. WHO, GenevaGoogle Scholar
  27. Zacher F, Kunike G (1931) Untersuchungen über die insektizide Wirkung von Oxyden und Karbonaten. Arbeiten aus der Biologischen Reichsanstalt für Land- und Forstwirtschaft, Berlin 18:201–231Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M. K. Faulde
    • 1
    Email author
  • M. Tisch
    • 2
  • J. J. Scharninghausen
    • 3
  1. 1.Department of Medical Entomology/ZoologyCentral Institute of the Bundeswehr Medical ServiceKoblenzGermany
  2. 2.Department of Otorhinolaryngology, Head and Neck SurgeryBundeswehr Hospital UlmUlmGermany
  3. 3.College of Public HealthUniversity of South FloridaTampaUSA

Personalised recommendations