Skip to main content
Log in

Where did that noise come from? Memory for sound locations is exceedingly eccentric both in front and in rear space

  • Research Article
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

Few studies have examined the stability of the representation of the position of sound sources in spatial working memory. The goal of this study was to verify whether the memory of sound position declines as maintenance time increases. In two experiments, we tested the influence of the delay between stimulus and response in a sound localization task. In Experiment 1, blindfolded participants listened to bursts of white noise originating from 16 loudspeakers equally spaced in a 360-degree circular space around the listener in such a way that the nose was aligned to the zero-degree coordinate. Their task was to indicate sounds’ position using a digital pointer when prompted at varying delays: 0, 3, and 6 s after stimulus offset. In Experiment 2, the task was analogous to Exp. 1 with stimulus–response delays of 0 or 10 s. Results of the two experiments show that increasing stimulus–response delays up to 10 s do not impair sound localization. Participants systematically overestimated the eccentricity of the auditory stimulus by shifting their responses either toward the 90-degree coordinate, in alignment with the right ear, or toward the 270-degree coordinate, in alignment with the left ear. Such bias was analogous in the front and in the rear azimuthal space and was only marginally influenced by the delay conditions. We conclude that the representation of auditory space in working memory is stable, but directionally biased with systematic overestimation of eccentricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alais D, Burr D (2004) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14(3):257–262

    CAS  PubMed  Google Scholar 

  • Appelle S (1972) Perception and discrimination as a function of stimulus orientation: the” oblique effect” in man and animals. Psychol Bull 78(4):266

    CAS  PubMed  Google Scholar 

  • Aytekin M, Moss CF, Simon JZ (2008) A sensorimotor approach to sound localization. Neural Comput 20(3):603–635

    PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57(1):289–300

    Google Scholar 

  • Bertelson P, Radeau M (1981) Cross-modal bias and perceptual fusion with auditory-visual spatial discordance. Percept Psychophys 29(6):578–584

    CAS  PubMed  Google Scholar 

  • Botta F, Santangelo V, Raffone A, Sanabria D, Lupiáñez J, Belardinelli MO (2011) Multisensory integration affects visuo-spatial working memory. J Exp Psychol Hum Percept Perform 37(4):1099

    PubMed  Google Scholar 

  • Briley PM, Kitterick PT, Summerfield AQ (2013) Evidence for opponent process analysis of sound source location in humans. J Assoc Res Otolaryngol 14(1):83–101

    PubMed  Google Scholar 

  • Brunetti M, Belardinelli P, Caulo M, Del Gratta C, Della Penna S, Ferretti A, Lucci G, Moretti A, Pizzella V, Tartaro A, Torquati K (2005) Human brain activation during passive listening to sounds from different locations: an fMRI and MEG study. Hum Brain Mapp 26(4):251–261

    CAS  PubMed  Google Scholar 

  • Butler RA (1986) The bandwidth effect on monaural and binaural localization. Hear Res 21(1):67–73

    CAS  PubMed  Google Scholar 

  • Butler RA, Musicant AD (1993) Binaural localization: influence of stimulus frequency and the linkage to covert peak areas. Hear Res 67(1):220–229

    CAS  PubMed  Google Scholar 

  • Celebrini S, Thorpe S, Trotter Y, Imbert M (1993) Dynamics of orientation coding in area V1 of the awake primate. Vis Neurosci 10(05):811–825

    CAS  PubMed  Google Scholar 

  • Clarke S, Adriani M, Bellmann A (1998) Distinct short-term memory systems for sound content and sound localization. NeuroReport 9(15):3433–3437

    CAS  PubMed  Google Scholar 

  • Colburn HS, Latimer JS (1978) Theory of binaural interaction based on auditory-nerve data. III. Joint dependence on interaural time and amplitude differences in discrimination and detection. J Acoust Soc Am 64(1):95–106

    CAS  PubMed  Google Scholar 

  • De Valois RL, Yund EW, Hepler N (1982) The orientation and direction selectivity of cells in macaque visual cortex. Vision Res 22(5):531–544

    PubMed  Google Scholar 

  • Ferlazzo F, Couyoumdjian A, Padovani T, Belardinelli MO (2002) Head-centred meridian effect on auditory spatial attention orienting. Q J Exp Psychol Sect A 55(3):937–963

    Google Scholar 

  • Furmanski CS, Engel SA (2000) An oblique effect in human primary visual cortex. Nat Neurosci 3(6):535–536

    CAS  PubMed  Google Scholar 

  • Garcia SE, Jones PR, Rubin GS, Nardini M (2017) Auditory localisation biases increase with sensory uncertainty. Sci Rep 7:40567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilkey RH, Anderson TR (1994) The accuracy of absolute localization judgments for speech stimuli. J Vestib Res Equilib Orientat 5(6):487–497

    Google Scholar 

  • Gilkey RH, Good MD, Ericson MA, Brinkman J, Stewart JM (1995) A pointing technique for rapidly collecting localization responses in auditory research. Behav Res Methods Instrum Comput 27(1):1–11

    Google Scholar 

  • Good MD, Gilkey RH (1996) Sound localization in noise: the effect of signal-to-noise ratio. J Acoust Soc Am 99(2):1108–1117

    CAS  PubMed  Google Scholar 

  • Goossens HHLM, Van Opstal AJ (1999) Influence of head position on the spatial representation of acoustic targets. J Neurophysiol 81(6):2720–2736

    CAS  PubMed  Google Scholar 

  • Haber L, Haber RN, Penningroth S, Novak K, Radgowski H (1993) Comparison of nine methods of indicating the direction to objects: data from blind adults. Perception 22(1):35–47

    CAS  PubMed  Google Scholar 

  • Harper NS, McAlpine D (2004) Optimal neural population coding of an auditory spatial cue. Nature 430(7000):682

    CAS  PubMed  Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41(1):35

    CAS  PubMed  Google Scholar 

  • Kennett S, Taylor-Clarke M, Haggard P (2001) Noninformative vision improves the spatial resolution of touch in humans. Curr Biol 11(15):1188–1191

    CAS  PubMed  Google Scholar 

  • Knudsen EI, Konishi M (1978) A neural map of auditory space in the owl. Science 200(4343):795–797

    CAS  PubMed  Google Scholar 

  • Konishi M (2003) Coding of auditory space. Annu Rev Neurosci 26(1):31–55

    CAS  PubMed  Google Scholar 

  • Leaver AM, Rauschecker JP (2016) Functional topography of human auditory cortex. J Neurosci 36(4):1416–1428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lechelt EC, Eliuk J, Tanne G (1976) Perceptual orientational asymmetries: a comparison of visual and haptic space. Percept Psychophys 20(6):463–469

    Google Scholar 

  • Lehnert G, Zimmer HD (2008) Modality and domain specific components in auditory and visual working memory tasks. Cogn Process 9(1):53

    PubMed  Google Scholar 

  • Lewald J, Ehrenstein WH (1998) Auditory-visual spatial integration: a new psychophysical approach using laser pointing to acoustic targets. J Acoust Soc Am 104(3):1586–1597

    CAS  PubMed  Google Scholar 

  • Lewald J, Ehrenstein WH (2001) Spatial coordinates of human auditory working memory. Cogn Brain Res 12(1):153–159

    CAS  Google Scholar 

  • Lewald J, Dörrscheidt GJ, Ehrenstein WH (2000) Sound localization with eccentric head position. Behav Brain Res 108(2):105–125

    CAS  PubMed  Google Scholar 

  • Makous JC, Middlebrooks JC (1990) Two-dimensional sound localization by human listeners. J Acoust Soc Am 87(5):2188–2200

    CAS  PubMed  Google Scholar 

  • Matsumoto M, Scripture EW (1897) Researches on acoustic space. Studies from the Yale Psychological Laboratory 5:1–75

  • McAlpine D (2005) Creating a sense of auditory space. J Physiol 566(1):21–28

    CAS  PubMed  PubMed Central  Google Scholar 

  • McAlpine D, Jiang D, Palmer AR (2001) A neural code for low-frequency sound localization in mammals. Nat Neurosci 4(4):396

    CAS  PubMed  Google Scholar 

  • McCarthy L, Olsen KN (2017) A “looming bias” in spatial hearing? Effects of acoustic intensity and spectrum on categorical sound source localization. Atten Percept Psychophys 79(1):352–362

    PubMed  Google Scholar 

  • Middlebrooks JC (1992) Narrow-band sound localization related to external ear acoustics. J Acoust Soc Am 92(5):2607–2624

    CAS  PubMed  Google Scholar 

  • Middlebrooks JC, Green DM (1991) Sound localization by human listeners. Annu Rev Psychol 42(1):135–159

    CAS  PubMed  Google Scholar 

  • Mills AW (1958) On the minimum audible angle. J Acoust Soc Am 30(4):237–246

    Google Scholar 

  • Molino JA (1974) Psychophysical verification of predicted interaural differences in localizing distant sound sources. J Acoust Soc Am 55(1):139–147

    CAS  PubMed  Google Scholar 

  • Newton VE (1983) Sound localisation in children with a severe unilateral hearing loss. Audiology 22(2):189–198

    CAS  PubMed  Google Scholar 

  • Oldfield SR, Parker SP (1984) Acuity of sound localisation: a topography of auditory space. I. Normal hearing conditions. Perception 13(5):581–600

    CAS  PubMed  Google Scholar 

  • Olivetti Belardinelli M, Santangelo V (2005) The head-centered meridian effect: auditory attention orienting in conditions of impaired visuo-spatial information. Disabil Rehabil 27(13):761–768

    PubMed  Google Scholar 

  • Olivetti Belardinelli M, Santangelo V, Botta F, Federici S (2007) Are vertical meridian effects due to audio-visual interference? A new confirmation with deaf subjects. Disabil Rehabil 29(10):797–804

    Google Scholar 

  • Overholt EdwinM, Rubel EdwinW, Hyson RichardL (1992) A circuit for coding interaural time differences in the chick brainstem. J Neurosci 12(5):1698–1708

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perrott DR (1984) Concurrent minimum audible angle: a re-examination of the concept of auditory spatial acuity. J Acoust Soc Am 75(4):1201–1206

    CAS  PubMed  Google Scholar 

  • Perrott DR, Ambarsoom H, Tucker J (1987) Changes in head position as a measure of auditory localization performance: auditory psychomotor coordination under monaural and binaural listening conditions. J Acoust Soc Am 82(5):1637–1645

    CAS  PubMed  Google Scholar 

  • Phillips DP (2008) A perceptual architecture for sound lateralization in man. Hear Res 238(1):124–132

    PubMed  Google Scholar 

  • Pick HL, Warren DH, Hay JC (1969) Sensory conflict in judgments of spatial direction. Percept Psychophys 6(4):203–205

    Google Scholar 

  • Pierce AH (1901) Studies in auditory and visual space perception. Longmans, Green, and Company

  • Pollack I, Rose M (1967) Effect of head movement on the localization of sounds in the equatorial plane. Percept Psychophys 2(12):591–596

    Google Scholar 

  • Populin LC (2008) Human sound localization: measurements in untrained, head-unrestrained subjects using gaze as a pointer. Exp Brain Res 190(1):11–30

    PubMed  PubMed Central  Google Scholar 

  • Preibisch-Effenberger R (1966) Endolaryngeale Ultraschallanwendung als neue Behandlungsmethode juveniler Kehlkopfpapillome. Eur Arch Oto Rhino Laryngol 186(2):146–152

    Google Scholar 

  • Razak KA (2011) Systematic representation of sound locations in the primary auditory cortex. J Neurosci 31(39):13848–13859

    CAS  PubMed  PubMed Central  Google Scholar 

  • Recanzone GH (2009) Interactions of auditory and visual stimuli in space and time. Hear Res 258(1):89–99

    PubMed  PubMed Central  Google Scholar 

  • Recanzone GH, Makhamra SD, Guard DC (1998) Comparison of relative and absolute sound localization ability in humans. J Acoust Soc Am 103(2):1085–1097

    CAS  PubMed  Google Scholar 

  • Salminen NH, Tiitinen H, Yrttiaho S, May PJ (2010) The neural code for interaural time difference in human auditory cortex. ‎J Acoust Soc Am 127(2):EL60–EL65

    PubMed  Google Scholar 

  • Slutsky DA, Recanzone GH (2001) Temporal and spatial dependency of the ventriloquism effect. NeuroReport 12(1):7–10

    CAS  PubMed  Google Scholar 

  • Stevens SS, Newman EB (1936) The localization of actual sources of sound. Am J Psychol 48(2):297–306

    Google Scholar 

  • van Bergeijk WA (1962) Variation on a theme of Bekesy: a model of binaural interaction. J Acoust Soc Am 34(9B):1431–1437

    Google Scholar 

  • Von Békésy G, Wever EG (1960) Experiments in hearing, vol 8. McGraw-Hill, New York

    Google Scholar 

  • Wenzel EM, Arruda M, Kistler DJ, Wightman FL (1993) Localization using nonindividualized head-related transfer functions. J Acoust Soc Am 94(1):111–123

    CAS  PubMed  Google Scholar 

  • Wightman FL, Kistler DJ (1989) Headphone simulation of free-field listening. II: psychophysical validation. J Acoust Soc Am 85(2):868–878

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Delogu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Marta Olivetti Belardinelli (Sapienza University of Rome).

Reviewers: two researchers who prefer to remain anonymous.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delogu, F., McMurray, P. Where did that noise come from? Memory for sound locations is exceedingly eccentric both in front and in rear space. Cogn Process 20, 479–494 (2019). https://doi.org/10.1007/s10339-019-00922-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-019-00922-1

Keywords

Navigation