Advertisement

Cognitive Processing

, Volume 19, Issue 3, pp 297–315 | Cite as

Risk approximation in decision making: approximative numeric abilities predict advantageous decisions under objective risk

  • Silke M. Mueller
  • Johannes Schiebener
  • Margarete Delazer
  • Matthias Brand
Research Report

Abstract

Many decision situations in everyday life involve mathematical considerations. In decisions under objective risk, i.e., when explicit numeric information is available, executive functions and abilities to handle exact numbers and ratios are predictors of objectively advantageous choices. Although still debated, exact numeric abilities, e.g., normative calculation skills, are assumed to be related to approximate number processing skills. The current study investigates the effects of approximative numeric abilities on decision making under objective risk. Participants (N = 153) performed a paradigm measuring number-comparison, quantity-estimation, risk-estimation, and decision-making skills on the basis of rapid dot comparisons. Additionally, a risky decision-making task with exact numeric information was administered, as well as tasks measuring executive functions and exact numeric abilities, e.g., mental calculation and ratio processing skills, were conducted. Approximative numeric abilities significantly predicted advantageous decision making, even beyond the effects of executive functions and exact numeric skills. Especially being able to make accurate risk estimations seemed to contribute to superior choices. We recommend approximation skills and approximate number processing to be subject of future investigations on decision making under risk.

Keywords

Decision making Approximate number system Risk estimation Ratio processing Numeracy 

Notes

Acknowledgement

We like to especially thank Christina Gallinger for her help with data acquisition.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Human and animal rights

This article does not contain any studies with animals performed by any of the authors.

References

  1. Ahl VA, Moore CF, Dixon JA (1992) Development of intuitive and numerical proportional reasoning. Cognit Dev 7(1):81–108.  https://doi.org/10.1016/0885-2014(92)90006-D CrossRefGoogle Scholar
  2. Baron J (1990) Reflectiveness and rational thinking: response to Duemler and Mayer (1988). J Educ Psychol 82(2):391–392.  https://doi.org/10.1037/0022-0663.82.2.391 CrossRefGoogle Scholar
  3. Barth H, La Mont K, Lipton J, Dehaene S, Kanwisher N, Spelke E (2006) Non-symbolic arithmetic in adults and young children. Cognition 98(3):199–222.  https://doi.org/10.1016/j.cognition.2004.09.011 CrossRefPubMedGoogle Scholar
  4. Brand M, Fujiwara E, Borsutzky S, Kalbe E, Kessler J, Markowitsch HJ (2005a) Decision-making deficits of korsakoff patients in a new gambling task with explicit rules: associations with executive functions. Neuropsychology 19(3):267–277.  https://doi.org/10.1037/0894-4105.19.3.267 CrossRefPubMedGoogle Scholar
  5. Brand M, Kalbe E, Labudda K, Fujiwara E, Kessler J, Markowitsch HJ (2005b) Decision-making impairments in patients with pathological gambling. Psychiatry Res 133(1):91–99CrossRefPubMedGoogle Scholar
  6. Brand M, Labudda K, Markowitsch HJ (2006) Neuropsychological correlates of decision-making in ambiguous and risky situations. Neural Networks 19(8):1266–1276.  https://doi.org/10.1016/j.neunet.2006.03.001 CrossRefPubMedGoogle Scholar
  7. Brand M, Recknor EC, Grabenhorst F, Bechara A (2007) Decisions under ambiguity and decisions under risk: correlations with executive functions and comparisons of two different gambling tasks with implicit and explicit rules. J Clin Exp Neuropsychol 29(1):86–99.  https://doi.org/10.1080/13803390500507196 CrossRefPubMedGoogle Scholar
  8. Brand M, Heinze K, Labudda K, Markowitsch HJ (2008) The role of strategies in deciding advantageously in ambiguous and risky situations. Cogn Process 9(3):159–173.  https://doi.org/10.1007/s10339-008-0204-4 CrossRefPubMedGoogle Scholar
  9. Brand M, Schiebener J, Pertl M-T, Delazer M (2014) Know the risk, take the win: how executive functions and probability processing influence advantageous decision making under risk conditions. J Clin Exp Neuropsychol 36(9):914–929.  https://doi.org/10.1080/13803395.2014.955783 CrossRefPubMedGoogle Scholar
  10. Brannon EM, Cantlon JF, Terrace HS (2006) The role of reference points in ordinal numerical comparisons by rhesus macaques (Macaca mulatta). J Exp Psychol Anim Behav Process 32(2):120–134.  https://doi.org/10.1037/0097-7403.32.2.120 CrossRefPubMedGoogle Scholar
  11. Buelow MT (2015) Predicting performance on the Columbia card task: effects of personality characteristics, mood, and executive functions. Assessment 22(2):178–187.  https://doi.org/10.1177/1073191114539383 CrossRefPubMedGoogle Scholar
  12. Butterworth B (2005) The development of arithmetical abilities. J Child Psychol Psychiatry 46(1):3–18.  https://doi.org/10.1111/j.1469-7610.2004.00374.x CrossRefPubMedGoogle Scholar
  13. Cappelletti M, Didino D, Stoianov I, Zorzi M (2014) Number skills are maintained in healthy ageing. Cogn Psychol 69:25–45.  https://doi.org/10.1016/j.cogpsych.2013.11.004 CrossRefPubMedGoogle Scholar
  14. Castronovo J, Göbel SM (2012) Impact of high mathematics education on the number sense. PLoS ONE 7(4):e33832.  https://doi.org/10.1371/journal.pone.0033832 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen Q, Li J (2014) Association between individual differences in non-symbolic number acuity and math performance: a meta-analysis. Acta Physiol 148:163–172.  https://doi.org/10.1111/cdep.12019 CrossRefGoogle Scholar
  16. Chen Y, Wang J, Kirk RM, Pethtel OL, Kiefner AE (2014) Age differences in adaptive decision making: the role of numeracy. Educ Gerontol 40(11):825–833.  https://doi.org/10.1080/03601277.2014.900263 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chesney D, Bjalkebring P, Peters E (2015) How to estimate how well people estimate: evaluating measures of individual differences in the approximate number system. Atten Percept Psychophys 77(8):2781–2802.  https://doi.org/10.3758/s13414-015-0974-6 CrossRefPubMedGoogle Scholar
  18. Clayton S, Gilmore C, Inglis M (2015) Dot comparison stimuli are not all alike: the effect of different visual controls on ANS measurement. Acta Physiol (Oxf) 161:177–184.  https://doi.org/10.1016/j.actpsy.2015.09.007 CrossRefGoogle Scholar
  19. Cohen J (1988) Statistical power analysis for the behavioural sciences—the effect size. Erlbaum, HillsdaleGoogle Scholar
  20. Cokely ET, Kelley CM (2009) Cognitive abilities and superior decision making under risk: a protocol analysis and process model evaluation. Judgm Decis Mak 4(1):20–33Google Scholar
  21. De Smedt B, Noël M-P, Gilmore C, Ansari D (2013a) How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends Neurosci Educ 2(2):48–55.  https://doi.org/10.1016/j.tine.2013.06.001 CrossRefGoogle Scholar
  22. De Smedt B, Noël M-P, Gilmore C, Ansari D (2013b) The relationship between symbolic and non-symbolic numerical magnitude processing skills and the typical and atypical development of mathematics: a review of evidence from brain and behavior. Trends Neurosci Educ 2:48–55.  https://doi.org/10.1016/j.tine.2013.06.001 CrossRefGoogle Scholar
  23. Dehaene S (1997) The number sense: how the mind creates mathematics. Oxford University Press, New YorkGoogle Scholar
  24. Dehaene S, Molko N, Cohen L, Wilson AJ (2004) Arithmetic and the brain. Curr Opin Neurobiol 14(2):218–224.  https://doi.org/10.1016/j.conb.2004.03.008 CrossRefPubMedGoogle Scholar
  25. Delazer M, Sinz H, Zamarian L, Benke T (2007) Decision-making with explicit and stable rules in mild Alzheimer’s disease. Neuropsychologia 45(8):1632–1641.  https://doi.org/10.1073/pnas.1108561108 CrossRefPubMedGoogle Scholar
  26. Delazer M, Kemmler G, Benke T (2013) Health numeracy and cognitive decline in advanced age. Aging Neuropsychol Cogn 20(6):639–659.  https://doi.org/10.1080/13825585.2012.750261 CrossRefGoogle Scholar
  27. Dietrich JF, Huber S, Nuerk H-C (2015) Methodological aspects to be considered when measuring the approximate number system (ANS)—a research review. Front Psychol 6(295):1–14.  https://doi.org/10.3389/fpsyg.2015.00295 CrossRefGoogle Scholar
  28. Donati MA, Panno A, Chiesi F, Primi C (2014) A mediation model to explain decision making under conditions of risk among adolescents: the role of fluid intelligence and probabilistic reasoning. J Clin Exp Neuropsychol 36(6):588–595.  https://doi.org/10.1080/13803395.2014.918091 CrossRefPubMedGoogle Scholar
  29. Epstein S (2003) Cognitive-experiential self-theory of personality. In: Millon T, Lerner MJ (eds) Handbook of Psychology, vol 5. Wiley, Hoboken, pp 159–184Google Scholar
  30. Estrada C, Barnes V, Collins C, Byrd JC (1999) Health literacy and numeracy. JAMA 282(6):527CrossRefPubMedGoogle Scholar
  31. Fabbri S, Caviola S, Tang J, Zorzi M, Butterworth B (2012) The role of numerosity in processing nonsymbolic proportions. Q J Exp Psychol 65(12):2435–2446.  https://doi.org/10.1080/17470218.2012.694896 CrossRefGoogle Scholar
  32. Feigenson L, Libertus ME, Halberda J (2013) Links between the intuitive sense of number and formal mathematics ability. Child Dev Perspect 7(2):74–79.  https://doi.org/10.1111/cdep.12019 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Figner B, Mackinlay RJ, Wilkening F, Weber EU (2009) Affective and deliberative processes in risky choice: age differences in risk taking in the Columbia card task. J Exp Psychol Learn Mem Cogn 35(3):709–730.  https://doi.org/10.1037/a0014983 CrossRefPubMedGoogle Scholar
  34. Flombaum JI, Junge JA, Hauser MD (2005) Rhesus monkeys (Macaca mulatta) spontaneously compute addition operations over large numbers. Cognition 97(3):315–325.  https://doi.org/10.1016/j.cognition.2004.09.004 CrossRefPubMedGoogle Scholar
  35. Frederick S (2005) Cognitive reflection and decision making. J Econ Perspect 19(4):25–42.  https://doi.org/10.1257/089533005775196732 CrossRefGoogle Scholar
  36. Gallistel CR, Gelman R (1992) Preverbal and verbal counting and computation. Cognition 44(1–2):43–74.  https://doi.org/10.1016/0010-0277(92)90050-R CrossRefPubMedGoogle Scholar
  37. Gebuis T, Reynvoet B (2011) Generating nonsymbolic number stimuli. Behav Res Methods 43(4):981–986.  https://doi.org/10.3758/s13428-011-0097-5 CrossRefPubMedGoogle Scholar
  38. Gilmore CK, McCarthy SE, Spelke ES (2007) Symbolic arithmetic knowledge without instruction. Nature 447(7144):589–591.  https://doi.org/10.1038/nature05850 CrossRefPubMedGoogle Scholar
  39. Gilmore C, Attridge N, Clayton S, Cragg L, Johnson S, Marlow N, Inglis M (2013) Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLoS ONE 8(6):e67374.  https://doi.org/10.1371/journal.pone.0067374 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Gilmore C, Attridge N, De Smedt B, Inglis M (2014) Measuring the approximate number system in children: exploring the relationships among different tasks. Learn Individ Differ 29:50–58.  https://doi.org/10.1016/j.lindif.2013.10.004 CrossRefGoogle Scholar
  41. Haist F, Wazny JH, Toomarian E, Adamo M (2015) Development of brain systems for nonsymbolic numerosity and the relationship to formal math academic achievement. Hum Brain Mapp 36(2):804–826.  https://doi.org/10.1002/hbm.22666 CrossRefPubMedGoogle Scholar
  42. Halberda J, Feigenson L (2008) Developmental change in the acuity of the “Number Sense”: the approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Dev Psychol 44(5):1457–1465.  https://doi.org/10.1037/a0012682 CrossRefPubMedGoogle Scholar
  43. Halberda J, Mazzocco MM, Feigenson L (2008) Individual differences in non-verbal number acuity correlate with maths achievement. Nature 455(7213):665–668.  https://doi.org/10.1038/nature07246 CrossRefPubMedGoogle Scholar
  44. Halberda J, Ly R, Wilmer JB, Naiman DQ, Germine L (2012) Number sense across the lifespan as revealed by a massive Internet-based sample. Proc Natl Acad Sci 109(28):11116–11120.  https://doi.org/10.1073/pnas.1200196109 CrossRefPubMedGoogle Scholar
  45. Hoffrage U, Lindsey S, Hertwig R, Gigerenzer G (2000) Communicating statistical information. Science 290(5500):2261–2262.  https://doi.org/10.1126/science.290.5500.2261 CrossRefPubMedGoogle Scholar
  46. Inglis M, Attridge N, Batchelor S, Gilmore C (2011) Non-verbal number acuity correlates with symbolic mathematics achievement: but only in children. Psychon Bull Rev 18(6):1222–1229.  https://doi.org/10.3758/s13423-011-0154-1 CrossRefPubMedGoogle Scholar
  47. Izard V, Dehaene S (2008) Calibrating the mental number line. Cognition 106(3):1221–1247.  https://doi.org/10.1016/j.cognition.2007.06.004 CrossRefPubMedGoogle Scholar
  48. Keller C, Kreuzmair C, Leins-Hess R, Siegrist M (2014) Numeric and graphic risk information processing of high and low numerates in the intuitive and deliberative decision modes: an eye-tracker study. Judgm Decis Mak 9(5):420–432Google Scholar
  49. Kreuzmair C, Siegrist M, Keller C (2016) High numerates count icons and low numerates process large areas in pictographs: results of an eye-tracking study. Risk Anal 36(8):1599–1614.  https://doi.org/10.1111/risa.12531 CrossRefPubMedGoogle Scholar
  50. Krueger LE (1982) Single judgments of numerosity. Percept Psychophys 31(2):175–182.  https://doi.org/10.3758/BF03206218 CrossRefPubMedGoogle Scholar
  51. Krueger LE (1984) Perceived numerosity: a comparison of magnitude production, magnitude estimation, and discrimination judgments. Percept Psychophys 35(6):536–542.  https://doi.org/10.3758/BF03205949 CrossRefPubMedGoogle Scholar
  52. Lipkus IM, Samsa G, Rimer BK (2001) General performance on a numeracy scale among highly educated samples. Med Decis Mak 21(1):37–44CrossRefGoogle Scholar
  53. Matthews PG, Chesney DL (2015) Fractions as percepts? Exploring cross-format distance effects for fractional magnitudes. Cogn Psychol 78:28–56.  https://doi.org/10.1016/j.cogpsych.2015.01.006 CrossRefPubMedGoogle Scholar
  54. Matthews PG, Lewis MR, Hubbard EM (2016) Individual differences in nonsymbolic ratio processing predict symbolic math performance. Psychol Sci 27(2):191–202.  https://doi.org/10.1177/0956797615617799 CrossRefPubMedGoogle Scholar
  55. McCrink K, Wynn K (2004) Large-number addition and subtraction by 9-month-old infants. Psychol Sci 15(11):776–781.  https://doi.org/10.1111/j.0956-7976.2004.00755.x CrossRefPubMedGoogle Scholar
  56. Moyer RS, Bayer RH (1976) Mental comparison and the symbolic distance effect. Cogn Psychol 8(2):228–246.  https://doi.org/10.1016/0010-0285(76)90025-6 CrossRefGoogle Scholar
  57. Moyer RS, Landauer TK (1967) Time required for judgements of numerical inequality. Nature 215(5109):1519–1520.  https://doi.org/10.1038/2151519a0 CrossRefPubMedGoogle Scholar
  58. Nelson HE (1976) A modified card sorting test sensitive to frontal lobe defects. Cortex 12(4):313–324.  https://doi.org/10.1016/S0010-9452(76)80035-4 CrossRefPubMedGoogle Scholar
  59. Payne JW, Samper A, Bettman JR, Luce MF (2008) Boundary conditions on unconscious thought in complex decision making. Psychol Sci 19(11):1118–1123.  https://doi.org/10.1111/j.1467-9280.2008.02212.x CrossRefPubMedGoogle Scholar
  60. Pertl M-T, Benke T, Zamarian L, Delazer M (2015) Decision making and ratio processing in patients with mild cognitive impairment. J Alzheimers Dis 48(3):765–779.  https://doi.org/10.3233/JAD-150291 CrossRefPubMedGoogle Scholar
  61. Pertl M-T, Zamarian L, Delazer M (2017) Reasoning and mathematical skills contribute to normatively superior decision making under risk: evidence from the game of dice task. Cogn Process.  https://doi.org/10.1007/s10339-017-0813-x PubMedCrossRefGoogle Scholar
  62. Peters E, Bjalkebring P (2015) Multiple numeric competencies: when a number is not just a number. J Pers Soc Psychol 108(5):802–822.  https://doi.org/10.1037/pspp0000019 CrossRefPubMedGoogle Scholar
  63. Peters E, Levin IP (2008) Dissecting the risky-choice framing effect: numeracy as an individual-difference factor in weighting risky and riskless options. Judgm Decis Mak 3(6):435–448Google Scholar
  64. Peters E, Västfjäll D, Slovic P, Mertz CK, Mazzocco K, Dickert S (2006) Numeracy and decision making. Psychol Sci 17(5):407–413.  https://doi.org/10.1111/j.1467-9280.2006.01720.x CrossRefPubMedGoogle Scholar
  65. Peters E, Hibbard J, Slovic P, Dieckmann N (2007) Numeracy skill and the communication, comprehension, and use of risk-benefit information. Health Aff 26(3):741–748.  https://doi.org/10.1377/hlthaff.26.3.741 CrossRefGoogle Scholar
  66. Peters E, Slovic P, Västfjäll D, Mertz C (2008) Intuitive numbers guide decisions. Judgm Decis Mak 3(8):619–635Google Scholar
  67. Pica P, Lemer C, Izard V, Dehaene S (2004) Exact and approximate arithmetic in an Amazonian indigene group. Science 306(5695):499–503.  https://doi.org/10.1126/science.1102085 CrossRefPubMedGoogle Scholar
  68. Price GR, Palmer D, Battista C, Ansari D (2012) Nonsymbolic numerical magnitude comparison: reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults. Acta Physiol 140(1):50–57.  https://doi.org/10.1016/j.actpsy.2012.02.008 CrossRefGoogle Scholar
  69. Reitan RM (1958) Validity of the trail making test as an indicator of organic brain damage. Percept Mot Skills 8(3):271–276.  https://doi.org/10.2466/pms.1958.8.3.271 CrossRefGoogle Scholar
  70. Reitan RM, Wolfson D (1995) Category test and trail making test as measures of frontal lobe functions. Clin Neuropsychol 9(1):50–56.  https://doi.org/10.1080/13854049508402057 CrossRefGoogle Scholar
  71. Revkin SK, Piazza M, Izard V, Zamarian L, Karner E, Delazer M (2008) Verbal numerosity estimation deficit in the context of spared semantic representation of numbers: a neuropsychological study of a patient with frontal lesions. Neuropsychologia 46(10):2463–2475.  https://doi.org/10.1016/j.neuropsychologia.2008.04.011 CrossRefPubMedGoogle Scholar
  72. Reyna VF, Brainerd CJ (1995) Fuzzy-trace theory: an interim synthesis. Learn Individ Differ 7(1):1–75.  https://doi.org/10.1016/1041-6080(95)90031-4 CrossRefGoogle Scholar
  73. Reyna VF, Brainerd CJ (2007) The importance of mathematics in health and human judgment: numeracy, risk communication, and medical decision making. Learn Individ Differ 17(2):147–159.  https://doi.org/10.1016/j.lindif.2007.03.010 CrossRefGoogle Scholar
  74. Reyna VF, Brainerd CJ (2011) Dual processes in decision making and developmental neuroscience: a fuzzy-trace model. Dev Rev 31(2):180–206.  https://doi.org/10.1016/j.dr.2011.07.004 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Reyna VF, Nelson WL, Han PK, Dieckmann NF (2009) How numeracy influences risk comprehension and medical decision making. Psychol Bull 135(6):943–973.  https://doi.org/10.1037/a0017327 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Schiebener J, Brand M (2015a) Decision making under objective risk conditions—a review of cognitive and emotional correlates, strategies, feedback processing, and external influences. Neuropsychol Rev 25(2):1–28.  https://doi.org/10.1007/s11065-015-9285-x CrossRefGoogle Scholar
  77. Schiebener J, Brand M (2015b) Self-reported strategies in decisions under risk: role of feedback, reasoning abilities, executive functions, short-term-memory, and working memory. Cogn Process.  https://doi.org/10.1007/s10339-015-0665-1 PubMedCrossRefGoogle Scholar
  78. Schiebener J, Zamarian L, Delazer M, Brand M (2011) Executive functions, categorization of probabilities, and learning from feedback: what does really matter for decision making under explicit risk conditions? J Clin Exp Neuropsychol 33(9):1025–1039.  https://doi.org/10.1080/13803395.2011.595702 CrossRefPubMedGoogle Scholar
  79. Schiebener J, Wegmann E, Gathmann B, Laier C, Pawlikowski M, Brand M (2014) Among three different executive functions, general executive control ability is a key predictor of decision making under objective risk. Front Psychol 5(1386):1–13.  https://doi.org/10.3389/fpsyg.2014.01386 CrossRefGoogle Scholar
  80. Schley DR, Peters E (2014) Assessing “economic value” symbolic-number mappings predict risky and riskless valuations. Psychol Sci 25(3):753–761.  https://doi.org/10.1177/0956797613515485 CrossRefPubMedGoogle Scholar
  81. Slovic P, Finucane ML, Peters E, MacGregor DG (2004) Risk as analysis and risk as feelings: some thoughts about affect, reason, risk, and rationality. Risk Anal 24(2):311–322.  https://doi.org/10.1111/j.0272-4332.2004.00433.x CrossRefPubMedGoogle Scholar
  82. Whalen J, Gallistel CR, Gelman R (1999) Nonverbal counting in humans: the psychophysics of number representation. Psychol Sci 10(2):130–137.  https://doi.org/10.1111/1467-9280.00120 CrossRefGoogle Scholar
  83. Xu F, Spelke ES (2000) Large number discrimination in 6-month-old infants. Cognition 74(1):B1–B11.  https://doi.org/10.1016/S0010-0277(99)00066-9 CrossRefPubMedGoogle Scholar
  84. Zamarian L, Sinz H, Bonatti E, Gamboz N, Delazer M (2008) Normal aging affects decisions under ambiguity, but not decisions under risk. Neuropsychology 22(5):645–657.  https://doi.org/10.1037/0894-4105.22.5.645 CrossRefPubMedGoogle Scholar

Copyright information

© Marta Olivetti Belardinelli and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Silke M. Mueller
    • 1
  • Johannes Schiebener
    • 1
  • Margarete Delazer
    • 2
  • Matthias Brand
    • 1
    • 3
  1. 1.General Psychology: Cognition and Center for Behavioral Addiction Research (CeBAR)University of Duisburg-EssenDuisburgGermany
  2. 2.Clinical Department of NeurologyInnsbruck Medical UniversityInnsbruckAustria
  3. 3.Erwin L. Hahn Institute for Magnetic Resonance ImagingEssenGermany

Personalised recommendations