Aloimonos Y (1993) Active perception. Lawrence Erlbaum, Hillsdale
Google Scholar
Bissmarck F, Svensson M, Tolt G (2015) Efficient algorithms for next best view evaluation. In: IEEE/RSJ international conference on intelligent robots and systems
Borji A, Itti L (2013) State-of-the-art in visual attention modeling. IEEE Trans Pattern Anal Mach Intell 35(1):185–207
Article
PubMed
Google Scholar
Canziani A, Culurciello E (2015) Visual attention with deep neural networks. In: Information sciences and systems (CISS), 2015 49th annual conference on, pp. 1–3, March 2015
Carrasco M (2011) Visual attention: the past 25 years. Vis Res 51(13):1484–1525
Article
PubMed
PubMed Central
Google Scholar
Connolly C (1985) The determination of next best views. In: Robotics and automation. Proceedings. 1985 IEEE international conference on, vol 2, pp 432–435. IEEE
Egeth HE (1966) Parallel versus serial processes in multidimensional stimulus discrimination. Atten Percept Psychophys 1(4):245–252
Article
Google Scholar
Foote T (2013) TF: the transform library. In: Technologies for practical robot applications (TePRA), 2013 IEEE international conference on, open-source software workshop, pp 1–6, April 2013
Forssén P-E, Meger D, Lai K, Helmer S, Little JJ, Lowe DG (2008) Informed visual search: combining attention and object recognition. In: Robotics and automation, 2008. icra 2008. IEEE international conference on, pp 935–942. IEEE
Gutierrez MA, Banchs RE, D’Haro LF (2015) Perceptive parallel processes coordinating geometry and texture. In: Proceedings of Workshop on Multimodal Semantics for Robotic Systems 2015, Hamburg, pp 30–35
Google Scholar
Gutiérrez MA, Manso LJ, Pandya H, Núñez P (2017) A passive learning sensor architecture for multimodal image labeling: an application for social robots. Sensors 17(2):353
Article
PubMed Central
Google Scholar
He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. In arXiv:1512.03385
Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259
Article
Google Scholar
Lee S, Lim J, Suh IH (2015) Incremental learning from a single seed image for object detection. In: Intelligent robots and systems (IROS), 2015 IEEE/RSJ international conference on, pp 1905–1912. IEEE
Manso LJ et al (2010) RoboComp: a tool-based robotics framework. In: Simulation, modeling and programming for autonomous robots, pp 251–262. Springer
Manso LJ, Bustos P, Bachiller P, Núñez P (2015) A perception-aware architecture for autonomous robots. Int J Adv Robot Syst 12(174):13
Google Scholar
Manso LJ, Calderita LV, Bustos P, Bandera A (2016) Use and advances in the active grammar-based modeling architecture. In: Proceedings of the workshop of physical agents, pp 1–25
Martinez Mozos O, Chollet F, Murakami K, Morooka K, Tsuji T, Kurazume R, Hasegawa T (2012) Tracing commodities in indoor environments for service robotics. In: IFAC Proceedings Volumes, vol 45, Elsevier, pp 71–76
Google Scholar
Mikolov T, Dean J (2013) Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems
Milliez G, Warnier M, Clodic A, Alami R (2014) A framework for endowing an interactive robot with reasoning capabilities about perspective-taking and belief management. In: The 23rd IEEE international symposium on robot and human interactive communication, pp 1103–1109. IEEE
Mnih V, Heess N, Graves A, Kavukcuoglu K (2015) Recurrent models of visual attention. In: Advances in neural information processing systems, vol 27
Müller HJ, Krummenacher J (2006) Visual search and selective attention. Vis Cognit 14(4–8):389–410
Article
Google Scholar
Pillai S, Leonard J (2015) Monocular slam supported object recognition. arXiv preprint arXiv:1506.01732
Quigley M et al (2009) ROS: an open-source robot operating system. In: Proc. of ICRA workshop on open source software
Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 779–788
Rothenstein AL, Tsotsos JK (2008) Attention links sensing to recognition. Image Vis Comput 26(1):114–126
Article
Google Scholar
Rusu RB, Bradski G, Thibaux R, Hsu J (2010) Fast 3d recognition and pose using the viewpoint feature histogram. In: Intelligent robots and systems (IROS), 2010 IEEE/RSJ international conference on, pp 2155–2162. IEEE
Sternberg S et al (1966) High-speed scanning in human memory. Science 153(3736):652–654
Article
PubMed
CAS
Google Scholar
Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cognit Psychol 12(1):97–136
Article
PubMed
CAS
Google Scholar
Tsotsos JK (2017) Attention and cognition: principles to guide modeling. In: Computational and cognitive neuroscience of vision, pp 277–295. Springer
Van der Maaten L, Hinton G (2012) Visualizing non-metric similarities in multiple maps. Mach Learn 87(1):33–55
Article
Google Scholar
Wallenberg M, Forssén P-E (2010) Embodied object recognition using adaptive target observations. Cognit Comput 2(4):316–325
Article
Google Scholar
Walther D, Rutishauser U, Koch C, Perona P (2005) Selective visual attention enables learning and recognition of multiple objects in cluttered scenes. Comput Vis Image Underst 100(1):41–63
Article
Google Scholar
Wolfe JM, Gray W (2007) Guided search 4.0. Integrated models of cognitive systems, pp 99–119
Xu K, Ba J, Kiros R, Courville A, Salakhutdinov R, Zemel R, Bengio Y (2015) Show, attend and tell: neural image caption generation with visual attention. arXiv preprint arXiv:1502.03044,