Visual re-identification of individual objects: a core problem for organisms and AI

Abstract

Two open questions about the visual re-identification of individual objects over extended time periods are briefly reviewed: (1) How much a priori information about the nature of objects, identity and time is required to support robust individual object re-identification abilities? and (2) how do epistemic feelings, such as the feeling of familiarity, contribute both to object re-identification and to the perception of opportunities and risks associated with individual objects and their affordances? The ongoing interplay between experiments that can be carried out with human subjects and experiments made possible with robotic systems is examined. It is suggested that developmental robotics, including virtual-reality simulations of robot–environment interactions, may provide the best route to understanding both the implementation of epistemic feelings in humans and their functional contribution to the identification of persistent individual objects.

This is a preview of subscription content, access via your institution.

References

  1. Arango-Muñoz S (2014) The nature of epistemic feelings. Philos Psychol 27:193–211

    Article  Google Scholar 

  2. Asada M, Hosoda K, Kuniyoshi Y, Ishiguro H, Inui T, Yoshikawa Y, Ogino M, Yoshida C (2009) Cognitive developmental robotics: a survey. IEEE Trans Auton Ment Dev 1:12–34

    Article  Google Scholar 

  3. Baillargeon R (2008) Innate ideas revisited: for a principle of persistence in infants’ physical reasoning. Perspect Psychol Sci 3:2–13

    PubMed Central  PubMed  Article  Google Scholar 

  4. Baillargeon R, Stavans M, Wu D, Gertner Y, Setoh P, Kittredge AK, Bernard A (2012) Object individuation and physical reasoning in infancy: an integrative account. Lang Learn Dev 8:4–46

    PubMed Central  PubMed  Article  Google Scholar 

  5. Blake R, Shiffrar M (2007) Perception of human motion. Annu Rev Psychol 58:47–73

    PubMed  Article  Google Scholar 

  6. Bloom P (2007) Religion is natural. Dev Sci 10:147–151

    PubMed  Article  Google Scholar 

  7. Brázdil T, Jančar P, Kučera A (2010) Reachability games on extended vector addition systems with states. Autom Lang Program Lect Notes Comput Sci 6199:478–489

    Article  Google Scholar 

  8. Bremner JG, Johnson SP, Slater A, Mason U, Foster K, Cheshire A, Spring J (2005) Conditions for young infants’ perception of object trajectories. Child Dev 76:1029–1043

    PubMed  Article  Google Scholar 

  9. Bremner JG, Johnson SP, Slater A, Mason U, Cheshire A, Spring J (2007) Conditions for young infants’ failure to perceive trajectory continuity. Dev Sci 10:613–624

    PubMed  Article  Google Scholar 

  10. Brosnan M, Ashwin C, Gamble T (2013) Greater empathizing and reduced systemizing in people who show a jumping to conclusions bias in the general population: implications for psychosis. Psychosis 5:71–81

    Article  Google Scholar 

  11. Caligiori D, Pezzulo G, Miall RC, Baldassarre G (2013) The contribution of brain sub-cortical loops in the expression and acquisition of action understanding abilities. Neurosci Biobehav Rev 37:2504–2515

    Article  Google Scholar 

  12. Cangelosi A (2010) Grounding language in action and perception: from cognitive agents to humanoid robots. Phys Life Rev 7:139–151

    PubMed  Article  Google Scholar 

  13. Cangelosi A, Schlesinger M (2015) Developmental robotics: from babies to robots. MIT Press, Cambridge

    Google Scholar 

  14. Carhart-Harris RL, Erritzoe D, Williams T et al (2012) Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc Natl Acad Sci USA 109:2138–2143

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  15. Chatterjee K, Randour M, Raskin J-F (2014) Strategy synthesis for multi-dimensional quantitative objectives. Acta Inform 51:129–163

    Article  Google Scholar 

  16. Chen Y, Weng J (2004) Developmental learning: a case study in understanding “object permanence”. In: Berthouze L, Kozima H, Prince CG et al (eds) Proceedings of the fourth international workshop on epigenetic robotics. Lund University, Lund, pp 35–42

    Google Scholar 

  17. Coltheart M, Langdon R, McKay R (2011) Delusional belief. Annu Rev Psychol 62:271–298

    PubMed  Article  Google Scholar 

  18. Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3:655–666

    CAS  PubMed  Article  Google Scholar 

  19. Craig AD (2009) How do you feel–now? The anterior insula and human awareness. Nat Rev Neurosci 10:59–70

    CAS  PubMed  Article  Google Scholar 

  20. Craig AD (2010) The sentient self. Brain Struct Funct 214:563–577

    PubMed  Article  Google Scholar 

  21. Craighero L, Metta G, Sandini G, Fadiga L (2007) The mirror-neurons system: data and models. Prog Brain Res 164:39–59

    PubMed  Article  Google Scholar 

  22. Csibra G, Gergely G (2012) Teleological understanding of actions. In: Banaji MR, Gelman SA (eds) Navigating the social world: what infants, children, and other species can teach us. Oxford University Press, Oxford, pp 38–43

    Google Scholar 

  23. de Kleer J (1986) An assumption-based TMS. Artif Intell 28:127–162

    Article  Google Scholar 

  24. Dietrich E, Fields C (1996) The role of the frame problem in Fodor’s modularity thesis: a case study in rationalist cognitive science. In: Ford KM, Pylyshyn ZW (eds) The Robot’s Dilemma revisited: the frame problem in artificial intelligence. Ablex, Norwood, pp 9–24

    Google Scholar 

  25. Dominey PF, Warneken F (2011) The basis of shared intentions in human and robot cognition. New Ideas Psychol 29:260–274

    Article  Google Scholar 

  26. Doyle J (1979) A truth maintenance system. Artif Intell 12:231–272

    Article  Google Scholar 

  27. Dunbar RIM (2003) The social brain: mind, language and society in evolutionary perspective. Annu Rev Anthropol 32:163–181

    Article  Google Scholar 

  28. Dunbar RIM, Shultz S (2007) Evolution in the social brain. Science 317:1344–1347

    CAS  PubMed  Article  Google Scholar 

  29. Eichenbaum H, Yonelinas AR, Ranganath C (2007) The medial temporal lobe and recognition memory. Annu Rev Neurosci 30:123–152

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  30. Feist GJ (1998) A meta-analysis of personality in scientific and artistic creativity. Personal Soc Psychol Rev 2:290–309

    CAS  Article  Google Scholar 

  31. Fields C (2004) The role of aesthetics in problem solving: some observations and a manifesto. J Exp Theor Artif Intell 16:41–55

    Article  Google Scholar 

  32. Fields C (2011a) Trajectory recognition as the basis for object individuation: a functional model of object file instantiation and object-token encoding. Front Psychol Percept Sci 2:49. doi:10.3389/fpsyg.2011.00049

    Google Scholar 

  33. Fields C (2011b) From ‘‘Oh, OK’’ to ‘‘Ah, yes’’ to ‘‘Aha!’’: hyper-systemizing and the rewards of insight. Personal Individ Differ 50:1159–1167

    Article  Google Scholar 

  34. Fields C (2012a) The very same thing: extending the object token concept to incorporate causal constraints on individual identity. Adv Cogn Psychol 8:234–247

    PubMed Central  PubMed  Article  Google Scholar 

  35. Fields C (2012b) Do autism spectrum disorders involve a generalized object categorization and identification dysfunction? Med Hypotheses 79:344–351

    PubMed  Article  Google Scholar 

  36. Fields C (2013a) How humans solve the frame problem. J Exp Theor Artif Intell 25:441–456

    Article  Google Scholar 

  37. Fields C (2013b) The principle of persistence, Leibniz’s law, and the computational task of object re-identification. Hum Dev 56:147–166

    Article  Google Scholar 

  38. Fields C (2014) Motion, identity and the bias toward agency. Frontiers in Human Neuroscience 8:597. doi:10.3389/fnhum.2014.00597

    PubMed Central  PubMed  Article  Google Scholar 

  39. Flombaum JI, Scholl BJ, Santos LR (2008) Spatiotemporal priority as a fundamental principle of object persistence. In: Hood B, Santos L (eds) The origins of object knowledge. Oxford University Press, New York, pp 135–164

    Google Scholar 

  40. Franklin S, Madl T, D’Mello S, Snaider J (2014) LIDA: a systems-level architecture for cognition, emotion and learning. IEEE Trans Auton Ment Dev 6:19–41

    Article  Google Scholar 

  41. Frazier BN, Gelman SA (2009) Developmental changes in judgments of authentic objects. Cogn Dev 24:284–292

    PubMed Central  PubMed  Article  Google Scholar 

  42. Freeman D (2007) Suspicious minds: the psychology of persecutory delusions. Clin Psychol Rev 27:425–457

    PubMed  Article  Google Scholar 

  43. Friston K (2010) The free-energy principle: a unified brain theory? Nat Rev Neurosci 11:127–138

    CAS  PubMed  Article  Google Scholar 

  44. Gao T, Scholl BJ (2010) Are objects required for object files? Roles of segmentation and spatiotemporal continuity in computing object persistence. Vis Cogn 18:82–109

    CAS  Article  Google Scholar 

  45. Gao T, McCarthy G, Scholl B (2010) The wolfpack effect: perception of animacy irresistibly influences interactive behavior. Psychol Sci 21:1845–1853

    PubMed  Article  Google Scholar 

  46. Gentner D (1983) Structure-mapping: a theoretical framework for analogy. Cogn Sci 7:155–170

    Article  Google Scholar 

  47. Gerhardstein P, Schroff G, Dickerson K, Adler SA (2009) The development of object recognition through infancy. In: Glenyn BC, Zini RP (eds) New directions in developmental psychobiology. Nova Science, Hauppauge, pp 79–115

    Google Scholar 

  48. Goertzel B, Lian R, Arel I, de Garis H, Chen S (2010) A world survey of artificial brain projects, part II: biologically inspired cognitive architectures. Neurocomputing 74:30–49

    Article  Google Scholar 

  49. Gottlieb J, Oudeyer P-Y, Lopes M, Baranes A (2013) Information-seeking, curiosity, and attention: computational and neural mechanisms. Trends Cogn Sci 17:585–593

    PubMed Central  PubMed  Article  Google Scholar 

  50. Gu X, Hof PR, Friston KJ, Fan J (2013) Anterior insular cortex and emotional awareness. J Comp Neurol 521:3371–3388

    PubMed Central  PubMed  Article  Google Scholar 

  51. Gutheil G, Gelman SA, Klein E, Michos K, Kelaita K (2008) Preschoolers’ use of spatiotemporal history, appearance, and proper name in determining individual identity. Cognition 107:366–380

    PubMed Central  PubMed  Article  Google Scholar 

  52. Heider F, Simmel M (1944) An experimental study of apparent behavior. Am J Psychol 57:243–259

    Article  Google Scholar 

  53. Heyes C (2010) Where do mirror neurons come from? Neurosci Biobehav Rev 34:575–583

    PubMed  Article  Google Scholar 

  54. Holroyd CB, Coles MGH (2008) Dorsal anterior cingulate cortex integrates reinforcement history to guide voluntary behavior. Cortex 44:548–559

    PubMed  Article  Google Scholar 

  55. Hood BM, Bloom P (2008) Children prefer certain individuals over perfect duplicates. Cognition 106:455–462

    PubMed  Article  Google Scholar 

  56. Inzlicht M, Bartholow BD, Hirsh JB (2015) Emotional foundations of cognitive control. Trends Cogn Sci 19:126–132

    PubMed Central  PubMed  Article  Google Scholar 

  57. Ivaldi S, Lyubova N, Gérardeaux-Viret D et al. (2012). Perception and human interaction for developmental learning of objects and affordances. In: Proceedings of the 12th IEEE-RAS international conference on humanoid robots (Humanoids Japan), pp 1–7

  58. Jepma M, Verdonschot RG, van Steenbergen H, Rombauts SARB, Nieuwenhuis S (2012) Neural mechanisms underlying the induction and relief of perceptual curiosity. Front Behav Neurosci 6:5. doi:10.3389/fnbeh.2012.00005

    PubMed Central  PubMed  Article  Google Scholar 

  59. Jicha GA, Carr SA (2010) Conceptual evolution in Alzheimer’s disease: implications for understanding the clinical phenotype of progressive neurodegenerative disease. J Alzheimers Dis 19:253–272

    PubMed Central  PubMed  Google Scholar 

  60. Josipovic Z (2014) Neural correlates of nondual awareness in meditation. Ann N Y Acad Sci 1307:9–18

    PubMed  Article  Google Scholar 

  61. Jost JT, Amodio DM (2012) Political ideology as motivated social cognition: behavioral and neuroscientific evidence. Motiv Emot 36:55–64

    Article  Google Scholar 

  62. Kahneman D, Treisman A (1984) Changing views of attention and automaticity. In: Parasuraman R, Davies DR (eds) Varieties of attention. Academic Press, New York, pp 29–61

    Google Scholar 

  63. Kaplan F, Oudeyer P-Y (2007) In search of the neural circuits of intrinsic motivation. Front Neurosci 1:225–236

    PubMed Central  PubMed  Article  Google Scholar 

  64. Kashdan TB, Silvia PJ (2009) Curiosity and interest: the benefits of thriving on novelty and challenge. In: Snyder CR, Lopez SJ (eds) Oxford handbook of positive psychology. Oxford University Press, Oxford, pp 367–374

    Google Scholar 

  65. Kelemen D (2004) Are children “intuitive theists”? Reasoning about purpose and design in nature. Psychol Sci 15:295–301

    PubMed  Article  Google Scholar 

  66. Kelemen D, Rottman J, Seston R (2013) Professional physical scientists display tenacious teleological tendencies: purpose-based reasoning as a cognitive default. J Exp Psychol Gen 142:1074–1083

    PubMed  Article  Google Scholar 

  67. Kernbach S, Kernbach O (2011) Collective energy homeostasis in a large-scale microrobotic swarm. Robotics and Autonomous Systems 59:1090–1101

    Article  Google Scholar 

  68. Koriat A (2012) The self-consistency model of subjective confidence. Psychol Rev 119:80–113

    PubMed  Article  Google Scholar 

  69. Lallée S, Pattacini U, Lemaignan S et al (2012) Towards a platform-independent cooperative human robot interaction system III: an architecture for learning and executing actions and shared plans. IEEE Trans Auton Ment Dev 4:239–253

    Article  Google Scholar 

  70. Litman JA (2010) Relationships between measures of I- and D-type curiosity, ambiguity tolerance, and need for closure: an initial test of the wanting-liking model of information-seeking. Personal Individ Differ 48:397–402

    Article  Google Scholar 

  71. Litman JA, Jimerson TL (2004) The measurement of curiosity as a feeling of deprivation. J Personal Assess 82:147–157

    Article  Google Scholar 

  72. Luo Y, Baillargeon R (2010) Toward a mentalistic account of early psychological reasoning. Curr Dir Psychol Sci 19:301–307

    PubMed Central  PubMed  Article  Google Scholar 

  73. Lyubova N, Filliat D (2012) Developmental approach for interactive object discovery.In: Proceedings of the 2012 international joint conference on neural networks (IJCNN), pp 1–7

  74. Mandler JM (2004) Thought before language. Trends Cogn Sci 8:508–513

    PubMed  Article  Google Scholar 

  75. McCarthy J, Hayes PJ (1969) Some philosophical problems considered from the standpoint of artificial intelligence. In: Meltzer B, Ritchie D (eds) Machine intelligence, vol 4. Elsevier, New York, pp 463–502

    Google Scholar 

  76. McCrae RR, John OP (1992) An introduction to the five-factor model and its applications. J Personal 60:175–215

    CAS  Article  Google Scholar 

  77. Narens L, Jameson KA, Komarova NL, Tauber S (2012) Language, categorization and convention. Adv Complex Syst 15, Article No. 1150022. doi:10.1142/S0219525911500226

  78. Needham A, Dueker G, Lockhead G (2005) Infants’ formation and use of categories to segregate objects. Cognition 94:215–240

    PubMed  Article  Google Scholar 

  79. Nguyen SM, Ivaldi S, Lyubova N et al (2013). Learning to recognize objects through curiosity-driven manipulation with the iCub humanoid robot. In: Proceedings of the 2013 IEEE third joint international conference on development and learning and epigenetic robotics (ICDL), pp 1–8

  80. Oudeyer P-Y, Kaplan F (2007) What is intrinsic motivation? A typology of computational approaches. Front Neurorobot 1:6. doi:10.3389/neuro.12.006.2007

    PubMed Central  PubMed  Article  Google Scholar 

  81. Oudeyer P-Y, Baranes A, Kaplan F (2013) Intrinsically motivated learning of real world sensorimotor skills with developmental constraints. In: Baldassarre G, Mirolli M (eds) Intrinsically motivated learning in natural and artificial systems. Springer, Berlin, pp 303–365

    Google Scholar 

  82. Panksepp J (2005) Affective consciousness: core emotional feelings in animals and humans. Conscious Cogn 14:30–80

    PubMed  Article  Google Scholar 

  83. Pavlova MA (2012) Biological motion processing as a hallmark of social cognition. Cereb Cortex 22:981–995

    PubMed  Article  Google Scholar 

  84. Pessoa L (2008) On the relationship between emotion and cognition. Nat Rev Neurosci 9:148–158

    CAS  PubMed  Article  Google Scholar 

  85. Picard F (2013) State of belief, subjective certainty and bliss as a product of cortical dysfunction. Cortex 49:2494–2500

    PubMed  Article  Google Scholar 

  86. Quilodran R, Rothe M, Procyk E (2008) Behavioral shifts and action validation in the anterior cingulate cortex. Neuron 57:314–325

    CAS  PubMed  Article  Google Scholar 

  87. Rakison DH, Yermoleva Y (2010) Infant categorization. Wiley Interdiscip Rev Cogn Sci 1:894–905

    PubMed  Article  Google Scholar 

  88. Rizzolatti G, Craighero L (2004) The mirror neuron system. Annu Rev Neurosci 27:169–192

    CAS  PubMed  Article  Google Scholar 

  89. Rizzolatti G, Sinigaglia C (2010) The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat Rev Neurosci 11:264–274

    CAS  PubMed  Article  Google Scholar 

  90. Rochat P (2012) Primordial sense of embodied self-unity. In: Slaughter V, Brownell CA (eds) Early development of body representations. Cambridge University Press, Cambridge, pp 3–18

    Google Scholar 

  91. Sandini G, Metta G, Vernon D (2007) The iCub cognitive humanoid robot: an open-system research platform for enactive cognition. In: Lungarella M, Iida F, Bongard J, Pfeifer R (eds) 50 years of artificial intelligence: lecture notes in computer science, vol 4850. Springer, Berlin, pp 358–369

    Google Scholar 

  92. Satta R (2013) Appearance descriptors for person re-identification: a comprehensive review. DIEE, University of Caligari technical report. arxiv:1307.5748v1[cs.CV]

  93. Schlesinger M (2013) Investigating the origins of intrinsic motivation in human infants. In: Baldassarre G, Mirolli M (eds) Intrinsically motivated learning in natural and artificial systems. Springer, Berlin, pp 367–392

    Google Scholar 

  94. Schlesinger M, Amso D, Johnson SP (2007). Simulating infants’ gaze patterns during the development of perceptual completion. In: Proceedings of the seventh international conference on epigenetic robotics: modeling cognitive development in robotic systems, Lund University, 157-164

  95. Schlesinger M, Amso D, Johnson SP, Hantehzadeh N, Gupta L (2012) Using the iCub simulator to study perceptual development: a case study. In: Proceedings of the 2012 IEEE international conference on development and learning and epigenetic robotics (ICDL), pp 1–6

  96. Scholl BJ (2007) Object persistence in philosophy and psychology. Mind Lang 22:563–591

    Article  Google Scholar 

  97. Scholl BJ, Gao T (2013) Perceiving animacy and intentionality: Visual processing or higher- level judgment? In: Rutherford MD, Kuhlmeier VA (eds) Social perception: detection and interpretation of animacy, agency, and intention. MIT Press, Cambridge, pp 197–230

    Google Scholar 

  98. Scholl BJ, Tremoulet P (2000) Perceptual causality and animacy. Trends Cogn Sci 4:299–309

    PubMed  Article  Google Scholar 

  99. Franklin S, Ramamurthy U, D’Mello SK, McCauley L, Negatu A, Silva L, R, Datla V (2007). LIDA: a computational model of global workspace theory and developmental learning. In: AAAI fall symposium on AI and consciousness: theoretical foundations. Palo Alto, AAAI, pp 61–66

  100. Silvia PJ (2012) Curiosity and motivation. In: Ryan R (ed) Oxford handbook of human motivation. Oxford University Press, Oxford, pp 157–166

    Google Scholar 

  101. Simion F, Regolin L, Bulf H (2008) A predisposition for biological motion in the newborn baby. Proc Natl Acad Sci USA 105:809–813

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  102. Snaider J, McCall R, Franklin S (2011) The LIDA framework as a general tool for AGI. In: Schmidhuber J, Thórisson KR, Looks M (eds) Artificial general intelligence 2011. Lecture notes in artificial intelligence. Springer, Berlin, pp 133–142

    Google Scholar 

  103. Sobel DM, Buchanan DW (2009) Bridging the gap: causality-at-a-distance in children’s categorization and inferences about internal properties. Cogn Dev 24:274–283

    Article  Google Scholar 

  104. Sobel D, Yoachim C, Gopnik A, Meltzoff A, Blumenthal E (2007) The blicket within: preschooler’s inferences about insides and causes. J Cogn Dev 8:159–182

    PubMed Central  PubMed  Article  Google Scholar 

  105. Spiegel D, Loewenstein RJ, Lewis-Fernández R et al (2011) Dissociative disorders in DSM-5. Depress Anxiety 28:824–852

    PubMed  Article  Google Scholar 

  106. Thill S, Caligiori D, Borghi AM, Ziemke T, Baldassarree G (2013) Theories and computational models of affordance and mirror systems: an integrative review. Neurosci Biobehav Rev 37:491–521

    PubMed  Article  Google Scholar 

  107. Tomasello M, Carpenter M, Call J, Behne T, Moll H (2005) Understanding and sharing intentions: the origins of cultural cognition. Behav Brain Sci 28:675–735

    PubMed  Google Scholar 

  108. Treisman A (2006) Object tokens, binding and visual memory. In: Zimmer H, Mecklinger A, Lindenberger U (eds) Handbook of binding and memory: perspectives from cognitive neuroscience. Oxford University Press, Oxford, pp 315–338

    Google Scholar 

  109. Valdés-Sosa MJ, Iglesias-Fuster J, Torres R (2014) Attentional selection of levels within hierarchically organized figures is mediated by object-files. Front Integr Neurosci 8, Article No. 91. doi:10.3389/fnint.2014.00091

  110. Vernon D, von Hofsten C, Fadiga L (2011) A roadmap for cognitive development in humanoid robots. Springer, Berlin

    Google Scholar 

  111. von Hofsten C (2007) Action in development. Dev Sci 10:54–60

    Article  Google Scholar 

  112. Wolf EJ, Miller MW, Reardon AF, Ryabchenko KA, Castillo D, Freund R (2012) A latent class analysis of dissociation and PTSD: evidence for a dissociative subtype. Arch Gen Psychiatry 69:698–705

    PubMed Central  PubMed  Article  Google Scholar 

  113. Zimmer HD, Ecker UKD (2010) Remembering perceptual features unequally bound in object and episodic tokens: Neural mechanisms and their electrophysiological correlates. Neurosci Biobehav Rev 34:1066–1079

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chris Fields.

Ethics declarations

Conflict of interest

The author states that he has no conflicts of interest relevant to the reported research.

Additional information

Handling Editor: Martin V. Butz, University of Tübingen.

Reviewers: Peter Gerhardstein, Binghamton University, SUNY, and two anonymous reviewers.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fields, C. Visual re-identification of individual objects: a core problem for organisms and AI. Cogn Process 17, 1–13 (2016). https://doi.org/10.1007/s10339-015-0736-3

Download citation

Keywords

  • Causal reasoning
  • Developmental robotics
  • Epistemic feelings
  • Individual differences
  • Intrinsic motivation
  • Object persistence
  • Vision