Skip to main content
Log in

Spatial distribution of attention and inter-hemispheric competition

  • Research Report
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

Considerable evidence has demonstrated functional asymmetry in spatial attention between the left and right hemispheres. In the present study, we aimed to examine the theoretical models of spatial attention by considering distribution and inter-hemispheric competition in neurologically healthy participants. Participants searched for a green circle target among green diamond non-targets in the presence or absence of a red singleton. Assuming that the salient singleton would increase the activation of the corresponding hemisphere, we manipulated the sides of the singleton visual fields and target visual fields. When the salient singleton was presented to the right visual field, target detection was faster for left visual field targets than for right visual field targets. In contrast, when the salient singleton was presented to the left visual field, target detection time was equivalent for left and right visual field targets. These results suggest that when the perceptually salient singleton acts as an activator, distribution of attention differs depending on the activated hemisphere induced by inter-hemispheric competition. These findings are in line with Kinsbourne’s opponent processor theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Badzakova-Trajkov G, Haberling IS, Roberts RP, Corballis MC (2010) Cerebral asymmetries: complementary and independent processes. PLoS One 5(3):e9682

    Article  PubMed Central  PubMed  Google Scholar 

  • Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436

    Article  CAS  PubMed  Google Scholar 

  • Burnham BR, Rozell CA, Kasper A, Bianco NE, Delliturri A (2011) The visual hemifield asymmetry in the spatial blink during singleton search and feature search. Brain Cogn 75(3):261–272

    Article  PubMed  Google Scholar 

  • Cicek M, Deouell LY, Knight RT (2009) Brain activity during landmark and line bisection tasks. Front Hum Neurosci 3:7

    Article  PubMed Central  PubMed  Google Scholar 

  • Cohen JC, Farah MJ, Romero RD, Servan-Schreiber D (1994) Mechanisms of spatial attention. J Cogn Neurosci 6:377–387

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Miezin FM, Shulman GL, Peterson SE (1993) A PET study of visuospatial attention. J Neurosci 13(3):1202–1226

    CAS  PubMed  Google Scholar 

  • Corbetta M, Kincade JM, Shulman GL (2002) Neural systems for visual orienting and their relationships to spatial working memory. J Neurosci 14(3):508–523

    Google Scholar 

  • Dambeck N, Sparing R, Meister IG, Wienemann M, Weidemann J, Topper R, Boroojerdi B (2006) Interhemispheric imbalance during visuospatial attention investigated by unilateral and bilateral TMS over human parietal cortices. Brain Res 1072(1):194–199

    Article  CAS  PubMed  Google Scholar 

  • de Fockert JW, Theeuwes J (2012) Role of frontal cortex in attentional capture by singleton distractors. Brain Cogn 80:367–373

    Article  PubMed  Google Scholar 

  • de Witt K, Michimata C (2011) Effects of spatial expectation and stimulus similarity on visual search with irrelevant singleton. Psychol Rep Sophia Univ 35:5–11

    Google Scholar 

  • Du F, Abrams RA (2010) Visual field asymmetry in attentional capture. Brain Cogn 72(2):310–316

    Article  PubMed  Google Scholar 

  • Duecker F, Sack AT (2014) The hybrid model of attentional control: New insights into hemispheric asymmetries inferred from TMS research. Neuropsychologia 74:21–29

    Article  PubMed  Google Scholar 

  • Duecker F, Formisano E, Sack AT (2013) Hemispheric differences in the voluntary control of spatial attention: direct evidence for a right-hemispheric dominance within frontal cortex. J Cogn Neurosci 25(8):1332–1342

    Article  PubMed  Google Scholar 

  • Egly R, Homa D (1991) Reallocation of visual attention. J Exp Psychol Hum Percept Perform 17(1):142–159

    Article  CAS  PubMed  Google Scholar 

  • Fink GR, Driver J, Rorden C, Baldeweg T, Dolan RJ (2000) Neural consequences of comepeting stimuli in both visual hemifields: a physiological basis for visual extinction. Ann Neurol 47(4):440–446

    Article  CAS  PubMed  Google Scholar 

  • Floel A, Buyx A, Breitenstein C, Lohmann H, Knecht S (2005) Hemispheric lateralization of spatial attention in right- and left-hemispheric language dominance. Behav Brain Res 158(2):269–275

    Article  CAS  PubMed  Google Scholar 

  • Geng JJ, Diquattro NE (2010) Attentional capture by a perceptually salient non-target facilitates target processing through inhibition and rapid rejection. J Vis 10(6):5

    Article  PubMed  Google Scholar 

  • Hackley SA, Valle-Inclán F (2003) Which stages of processing are speeded by a warning signal? Biol Psychol 64:27–45

    Article  PubMed  Google Scholar 

  • Heilman KM, Bowers D, Valenstein E, Watson RT (1987) Hemispace and hemispatial neglect. In: Jeannerod M (ed) Neurophysiological and neuropsychological aspects of spatial neglect. Elsevier Science, Amsterdam, pp 115–150

    Chapter  Google Scholar 

  • Hickey C, McDonald JJ, Theeuwes J (2006) Electrophysiological evidence of the capture of visual attention. J Cogn Neurosci 18(4):604–613

    Article  PubMed  Google Scholar 

  • Hilgetag CC, Theoret H, Pascual-Leone A (2001) Enhanced visual spatial attention ipsilateral to rTMS-induced ‘virtual lesions’ of human parietal cortex. Nat Neurosci 4(9):953–957

    Article  CAS  PubMed  Google Scholar 

  • Jewell G, McCourt ME (2000) Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia 38(1):93–110

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Mesulam MM (1999) The large-scale neural network for spacial attention displays multifunctional overlap but differential asymmetry. NeuroImage 9:269–277

    Article  CAS  PubMed  Google Scholar 

  • Kinsbourne M (1977) Hemi-neglect and hemisphere rivalry. In: Weinstein EA, Friedland RP (eds) Advance in neurology, vol 18. Raven Press, New York, pp 41–49

    Google Scholar 

  • Kinsbourne M (1987) Mechanisms of unilateral neglect. In: Jeannerod M (ed) Neurophysiological and neuropsychological aspects of spatial neglect. Elsevier Science, Amsterdam, pp 69–86

    Chapter  Google Scholar 

  • Kinsbourne M (1993) Orientational bias model of unilateral neglect: Evidence from attentional gradiens within hemispace. In: Robertson IH, Marshall JC (eds) Unilateral neglect: clinical and experimental studies. Lawrence Erlbaum Associates, Hove, Hillsdale, pp 63–86

    Google Scholar 

  • Kinsbourne M (1994) Mechanisms of neglect: implications for rehabilitation. Neuropsychol Rehabil 4(2):151–153

    Article  Google Scholar 

  • Làdavas E, Del Pesce M, Provinciali L (1989) Unilateral attentional deficits and hemispheric asymmetries in the control of visual attention. Neuropsychologia 27:353–366

    Article  PubMed  Google Scholar 

  • Làdavas E, Petronio A, Umiltà C (1990) The deployment of visual attention in the intact field of hemineglect patients. Cortex 26(3):307–317

    Article  PubMed  Google Scholar 

  • Lavie N (1995) Perceptual load as a necessary condition for selective attention. J Exp Psychol Hum Percept Perform 21(3):451–468

    Article  CAS  PubMed  Google Scholar 

  • Lavie N, Ro T, Russell C (2003) The role of perceptual load in processing distractor faces. Psychol Sci 14(5):510–515

    Article  PubMed  Google Scholar 

  • Lavie N, Hirst A, de Fockert JW, Viding E (2004) Load theory of selective attention and cognitive control. J Exp Psychol Gen 133(3):339–354

    Article  PubMed  Google Scholar 

  • Levy J, Heller W, Banich MT, Burton LA (1983) Asymmetry of perception in free viewing of chimeric faces. Brain Cogn 2:404–419

    Article  CAS  PubMed  Google Scholar 

  • Müller HJ, Geyer T, Zehetleitner M, Krummenacher J (2009) Attentional capture by salient color singleton distractors is modulated by top-down dimensional set. J Exp Psychol Hum Percept Perform 35(1):1–16

    Article  PubMed  Google Scholar 

  • Nicholls M, Bradshaw J, Mattingley J (1999) Free-viewing perceptual asymmetries for the judgement of brightness, numerosity and size. Neuropsychologia 37:307–314

    Article  CAS  PubMed  Google Scholar 

  • Nobre A, Sebestyen GN, Gitelman DR, Mesulam MM, Frackowiak RSJ, Frith CD (1997) Functional localization of the system for visuospatial attention using positron emission tomography. Brain 120:515–533

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Ossandon JP, Onat S, Konig P (2014) Spatial biases in viewing behavior. J Vis 14(2):1–26

    Article  Google Scholar 

  • Parks EL, Madden DJ (2013) Brain connectivity and visual attention. Brain Connect 3(4):317–338

    Article  PubMed Central  PubMed  Google Scholar 

  • Pelli DG (1997) The videotoolbox software for visual psychophysics: transforming numbers into movies. Spat Vis 10:437–442

    Article  CAS  PubMed  Google Scholar 

  • Pollmann S (1996) A pop-out induced extinction-like phenomenon in neurologically intact subjects. Neuropsychologia 34(5):413–425

    Article  CAS  PubMed  Google Scholar 

  • Pollmann S (2000) Extinction-like effects in normals: independence of localization and response selection. Brain Cogn 44(3):324–341

    Article  CAS  PubMed  Google Scholar 

  • Posner MI, Walker JA, Friedrich FJ, Rafal RD (1984) Effects of parietal injury on covert orienting of attention. J Neurosci 4(7):1863–1874

    CAS  PubMed  Google Scholar 

  • Roy EA, Reuter-Lorenz P, Roy LG, Copland S, Moscovitch M (1987) Unilateral attention deficits and hemispheric asymmetries in the control of attention. In: Jeannerod M (ed) Neurophysiological and neuropsychological aspects of spatial neglect. Elsevier Science Publishers, North Holland, pp 25–39

    Chapter  Google Scholar 

  • SanMiguel I, Linden D, Escera C (2010) Attention capture by novel sounds: distraction versus facilitation. Eur J Cogn Psychol 22(4):481–515

    Article  Google Scholar 

  • Sayim B, Grubert A, Herzog MH, Krummenacher J (2010) Display probability modulates attentional capture by onset distractors. J Vis 10(3):1–8

    Article  PubMed  Google Scholar 

  • Scolari M, Seidl-Rathkopf KN, Kastner S (2015) Functions of the human frontoparietal attention network: evidence from neuroimaging. Curr Opin Behav Sci 1:32–39

    Article  Google Scholar 

  • Shimoda N, Takeda K, Imai I, Kaneko J, Kato H (2008) Cerebral laterality differences in handedness: a mental rotation study with NIRS. Neurosci Lett 430(1):43–47

    Article  CAS  PubMed  Google Scholar 

  • Smania N, Martini MC, Gambina G, Tomelleri G, Palamara A, Natale E, Marzi CA (1998) The spatial distribution of visual attention in hemineglect and extinction patiaents. Brain 121:1759–1770

    Article  PubMed  Google Scholar 

  • Sommer W, Kraft A, Schmid S, Olma M, Brandt S (2008) Dynamic spatial coding within the dorsal frontoparietal network during a visual search task. PLoS One 3(9):e3167

    Article  PubMed Central  PubMed  Google Scholar 

  • Stafford IL, Jacobs BL (1990) Noradrenergic modulation of the masseteric reflex in behaving cats—II: physiological studies. J Neurosci 10:99–107

    CAS  PubMed  Google Scholar 

  • Theeuwes J (1990) Perceptual sensitivity is task dependent: evidence from selective search. Acta Psychol 74:81–99

    Article  CAS  Google Scholar 

  • Theeuwes J (1991a) Cross-dimensional perceptual selectivity. Percept Psychophys 50(2):184–193

    Article  CAS  PubMed  Google Scholar 

  • Theeuwes J (1991b) Exogenous and endogenous control of attention: the effect of visual onsets and offsets. Percept Psychophys 49(1):83–90

    Article  CAS  PubMed  Google Scholar 

  • Theeuwes J (1992) Perceptual selectivity for color and form. Percept Psychophys 51(6):599–606

    Article  CAS  PubMed  Google Scholar 

  • Theeuwes J, Van der Burg E (2007) The role of spatial and nonspatial information in visual selection. J Exp Psychol Hum Percept Perform 33(6):1335–1351

    Article  PubMed  Google Scholar 

  • Theeuwes J, Reimann B, Mortier K (2006) Visual search for featural singletons: no top-down modulation, only bottom-up priming. Vis Cogn 14(4–8):466–489

    Article  Google Scholar 

  • Vallar G, Lobel E, Galati G, Berthoz A, Pizzamiglio L, Le Bihan D (1999) A fronto-parietal system for computing the egocentric spatial frame of reference in humans. Exp Brain Res 124:281–286

    Article  CAS  PubMed  Google Scholar 

  • Vogel JJ, Bowers CA, Vogel DS (2003) Cerebral lateralization of spatial abilities: a meta-analysis. Brain Cogn 52(2):197–204

    Article  PubMed  Google Scholar 

  • Zhang X, Zhaoping L, Zhou T, Fang F (2012) Neural activities in V1 create a bottom-up saliency map. Neuron 73(1):183–192

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Research Fellowship of the Japan Society for the Promotion of Science for Young Scientists to Kao Yamaoka.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kao Yamaoka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Authors agree that all procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Authors agree that informed consent was obtained from all individual participants included in the study.

Additional information

Handling Editor: Juan Lupianez, University of Granada.

Reviewers: Fabiano Botta, University of Granada; Gina Grimshaw, Victoria University of Wellington.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaoka, K., Michimata, C. Spatial distribution of attention and inter-hemispheric competition. Cogn Process 16, 417–425 (2015). https://doi.org/10.1007/s10339-015-0734-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-015-0734-5

Keywords

Navigation