Advertisement

Cognitive Processing

, Volume 16, Issue 2, pp 151–163 | Cite as

Scaling laws in emotion-associated words and corresponding network topology

  • Takuma TakeharaEmail author
  • Fumio Ochiai
  • Naoto Suzuki
Research Report

Abstract

We investigated whether scaling laws were present in the appearance-frequency distribution of emotion-associated words and determined whether the network constructed from those words had small-world or scale-free properties. Over 1,400 participants were asked to write down the first single noun that came to mind in response to nine emotional cue words, resulting in a total of 12,556 responses. We identified Zipf’s law in the distribution of the data, as the slopes of the regression lines reached approximately −1.0 in the appearance frequencies for each emotional cue word. This suggested that the emotion-associated words had a clear regularity, were not randomly generated, were scale-invariant, and were influenced by unification/diversification forces. Thus, we predicted that the emotional intensity of the words might play an important role for a Zipf’s law. Moreover, we also found that the 1-mode network of emotion-associated words clearly had small-world properties in terms of the network topologies of clustering, average distance, and small-worldness value, indicating that all nodes (words) were highly interconnected with each other and were only a few short steps apart. Furthermore, the data suggested the possibility of a scale-free property. Interestingly, we were able to identify hub words with neutral emotional content, such as ‘dog’, ‘woman’, and ‘face’, indicating that these neutral words might be an intermediary between words with conflicting emotional valence. Additionally, efficiency and optimal navigation in terms of complex networks were discussed.

Keywords

Emotion-associated words Zipf’s law Complex networks Small-world Scale-free 

Notes

Acknowledgments

This research was supported by the Ministry of Education, Culture, Sports, Science and Technology Grant-in-Aid for Challenging Exploratory Research, 24650140, 2012, awarded to the primary author. We are grateful to Toshio Shibata, Kunio Midzuno, Toru Tazumi, Takanobu Baba, Yosuke Tezuka, Kyoko Yamamoto, and Akemi Takehara for their assistance. We are also grateful to Guston Rankin, Mariko Shirai, and two anonymous reviewers for their extremely valuable comments.

Supplementary material

10339_2014_643_MOESM1_ESM.pdf (694 kb)
Supplementary material 1 (PDF 694 kb)

References

  1. Adamic L (2011) Unzipping Zipf’s law. Nature 474:164–165. doi: 10.1038/474164a CrossRefPubMedGoogle Scholar
  2. Albert R, Jeong H, Barabási A-L (1999) Internet: diameter of the world-wide web. Nature 401:130–131CrossRefGoogle Scholar
  3. Alonso-Arbiol I, Shaver PR, Fraley RC, Oronoz B, Unzurrunzaga E, Urizar R (2006) Structure of the Basque emotion lexicon. Cognit Emot 20:836–865. doi: 10.1080/02699930500405469 CrossRefGoogle Scholar
  4. Baek SK, Bernhardsson S, Minnhagen P (2011) Zipf’s law unzipped. New J Phys 13:043004. doi: 10.1088/1367-2630/13/4/043004 CrossRefGoogle Scholar
  5. Balasubrahmanyan VK, Naranan S (1996) Quantitative linguistics and complex system studies. J Quant Linguist 3:177–228. doi: 10.1080/09296179608599629 CrossRefGoogle Scholar
  6. Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512CrossRefPubMedGoogle Scholar
  7. Baronchelli A, Ferrer-i-Cancho R, Pastor-Satorras R, Chater N, Christiansen MH (2013) Networks in cognitive science. Trends Cogn Sci 17:348–360. doi: 10.1016/j.tics.2013.04.010 CrossRefPubMedGoogle Scholar
  8. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. Int AAAI Conf Weblogs Soc Media 8:361–362Google Scholar
  9. Batagelj V, Mrvar A (2004) Pajek—analysis and visualization of large networks. In: Jünger M, Mutzel P (eds) Graph drawing software. Springer, Berlin, pp 77–104CrossRefGoogle Scholar
  10. Beckage N, Smith L, Hills T (2011) Small worlds and semantic network growth in typical and late talkers. PLoS ONE 6:e19348. doi: 10.1371/journal.pone.0019348 CrossRefPubMedCentralPubMedGoogle Scholar
  11. Borgatti SP, Everett MG (1997) Network analysis of 2-mode data. Soc Netw 19:243–269CrossRefGoogle Scholar
  12. Borgatti SP, Everett MG, Freeman LC (2002) Ucinet 6 for windows. Analytic Technologies, HarvardGoogle Scholar
  13. Borsboom D, Cramer AO, Schmittmann VD, Epskamp S, Waldorp LJ (2011) The small world of psychopathology. PLoS ONE 6:e27407. doi: 10.1371/journal.pone.0027407 CrossRefPubMedCentralPubMedGoogle Scholar
  14. Bower GH (1981) Mood and memory. Am Psychol 36:129–148CrossRefPubMedGoogle Scholar
  15. Church T, Katigbak MS, Reyes JAS, Jensen SM (1998) Language and organisation of Filipino emotion concepts: comparing emotion concepts and dimensions across cultures. Cognit Emot 12:63–92. doi: 10.1080/026999398379781 CrossRefGoogle Scholar
  16. Clutton-Brock TH, Harvey PH (1980) Primates, brain and ecology. J Zool 190:309–323CrossRefGoogle Scholar
  17. Collins AM, Loftus EF (1975) A spreading-activation theory of semantic processing. Psychol Rev 82:407–428CrossRefGoogle Scholar
  18. Coronges KA, Stacy AW, Valente TW (2007) Structural comparison of cognitive associative networks in two populations. J Appl Soc Psychol 37:2097–2129. doi: 10.1111/j.1559-1816.2007.00253.x CrossRefGoogle Scholar
  19. de Castro R, Grossman JW (1999) Famous trails to Paul Erdős. Math Intell 21:51–53CrossRefGoogle Scholar
  20. De Deyne S, Storms G (2008) Word associations: norms for 1,424 Dutch words in a continuous task. Behav Res Methods 40:198–205. doi: 10.3758/BRM.40.1.198 CrossRefPubMedGoogle Scholar
  21. Edwards AM, Freeman MP, Breed GA, Jonsen ID (2012) Incorrect likelihood methods were used to infer scaling laws of marine predator search behaviour. PLoS ONE 7:e45174. doi: 10.1371/journal.pone.0045174 CrossRefPubMedCentralPubMedGoogle Scholar
  22. Ekman P (1992) An argument for basic emotions. Cognit Emot 6:169–200CrossRefGoogle Scholar
  23. Ekman P, Friesen WV (1971) Constants across cultures in the face and emotion. J Pers Soc Psychol 17:124–129CrossRefPubMedGoogle Scholar
  24. Ekman P, Friesen WV (1975) Unmasking the face. Prentice Hall, EnglewoodGoogle Scholar
  25. Ferreira AAA, Corso G, Piuvezam G, Alves MSCF (2006) A scale-free network of evoked words. Braz J Phys 36:755–758. doi: 10.1590/S0103-97332006000500032 CrossRefGoogle Scholar
  26. Ferrer-i-Cancho R (2005) Decoding least effort and scaling in signal frequency distributions. Phys A 345:275–284. doi: 10.1016/j.physa.2004.06.158 CrossRefGoogle Scholar
  27. Ferrer-i-Cancho R, Solé RV (2001a) Two regimes in the frequency of words and the origins of complex lexicons: Zipf’s law revisited. J Quant Linguist 8:165–173. doi: 10.1076/jqul.8.3.165.4101 CrossRefGoogle Scholar
  28. Ferrer-i-Cancho R, Solé RV (2001b) The small world of human language. Proc R Soc Lond B Biol Sci 268:2261–2265. doi: 10.1098/rspb.2001.1800 CrossRefGoogle Scholar
  29. Ferrer-i-Cancho R, Solé RV (2003) Least effort and the origins of scaling in human language. Proc Natl Acad Sci USA 100:788–791. doi: 10.1073/pnas.0335980100 CrossRefPubMedGoogle Scholar
  30. Galati D, Sini B, Tinti C, Testa S (2008) The lexicon of emotion in the neo-Latin languages. Soc Sci Inf 47:205–220. doi: 10.1177/0539018408089079 CrossRefGoogle Scholar
  31. Harremoës P, Topsøe F (2005) Zipf’s law, hyperbolic distributions and entropy loss. Electron Notes Discrete Math 21:315–318CrossRefGoogle Scholar
  32. Hills TT, Maouene M, Maouene J, Sheya A, Smith L (2009) Longitudinal analysis of early semantic networks: preferential attachment or preferential acquisition? Psychol Sci 20:729–739. doi: 10.1111/j.1467-9280.2009.02365.x CrossRefPubMedCentralPubMedGoogle Scholar
  33. Hills TT, Kalff C, Wiener JM (2013) Adaptive Lévy processes and area-restricted search in human foraging. PLoS ONE 8:e60488. doi: 10.1371/journal.pone.0060488 CrossRefPubMedCentralPubMedGoogle Scholar
  34. Humphries MD, Gurney K (2008) Network ‘small-world-ness’: a quantitative method for determining canonical network equivalence. PLoS ONE 3:e0002051. doi: 10.1371/journal.pone.0002051 CrossRefPubMedGoogle Scholar
  35. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási A-L (2000) The large-scale organization of metabolic networks. Nature 407:651–654CrossRefPubMedGoogle Scholar
  36. Ke J, Yao Y (2008) Analysing language development from a network approach. J Quant Linguist 15:70–99. doi: 10.1080/09296170701794286 CrossRefGoogle Scholar
  37. Knuth DE (1993) The Stanford GraphBase: a platform for combinatorial computing. Addison-Wesley, ReadingGoogle Scholar
  38. Latapy M, Magnien C, Del Vecchio N (2008) Basic notions for the analysis of large two-mode networks. Soc Netw 30:31–48. doi: 10.1016/j.socnet.2007.04.006 CrossRefGoogle Scholar
  39. Latora V, Marchiori M (2001) Efficient behaviour of small-world networks. Phys Rev Lett 87:198701. doi: 10.1103/PhysRevLett.87.198701 CrossRefPubMedGoogle Scholar
  40. Levenson RW (1999) The intrapersonal functions of emotion. Cognit Emot 13:481–504CrossRefGoogle Scholar
  41. Ludueña GA, Behzad MD, Gros C (2014) Exploration in free word association networks: models and experiment. Cogn Process 15:195–200. doi: 10.1007/s10339-013-0590-0 CrossRefPubMedGoogle Scholar
  42. Lundgren R, Olesen JM (2005) The dense and highly connected world of Greenland’s plants and their pollinators. Arct Antarct Alp Res 37:514–520. doi:10.1657/1523-0430(2005)037[0514:TDAHCW]2.0.CO;2CrossRefGoogle Scholar
  43. Marino L (1996) What can dolphins tell us about primate evolution? Evolu Anthropol 5:81–85CrossRefGoogle Scholar
  44. Mathias N, Gopal V (2001) Small worlds: how and why. Phys Rev E 63:021117. doi: 10.1103/PhysRevE.63.021117 CrossRefGoogle Scholar
  45. McCowan B, Hanser SF, Doyle LR (1999) Quantitative tools for comparing animal communication systems: information theory applied to bottlenose dolphin whistle repertoires. Ani Behav 57:409–419CrossRefGoogle Scholar
  46. Motter AE, de Moura APS, Lai Y-C, Dasgupta P (2002) Topology of the conceptual network of language. Phys Rev E 65:065102. doi: 10.1103/PhysRevE.65.065102 CrossRefGoogle Scholar
  47. Naranan S, Balasubrahmanyan V (1998) Models for power law relations in linguistics and information science. J Quant Linguist 5:35–61. doi: 10.1080/09296179808590110 CrossRefGoogle Scholar
  48. Nelson DL, McEvoy CL, Schreiber TA (2004) The University of South Florida free association, rhyme, and word fragment norms. Behav Res Methods Instrum Comput 36:402–407. doi: 10.3758/BF03195588 CrossRefPubMedGoogle Scholar
  49. Nelson DL, Dyrdal GM, Goodmon LB (2005) What is preexisting strength? Predicting free association probabilities, similarity ratings, and cued recall probabilities. Psychon Bull Rev 12:711–719. doi: 10.3758/BF03196762 CrossRefPubMedGoogle Scholar
  50. Nesse RM (1990) Evolutionary explanations of emotions. Human Nat 1:261–289Google Scholar
  51. Neta M, Davis FC, Whalen PJ (2011) Valence resolution of ambiguous facial expressions using an emotional oddball task. Emotion 11:1425–1433. doi: 10.1037/a0022993 CrossRefPubMedCentralPubMedGoogle Scholar
  52. Newman MEJ (2001) The structure of scientific collaboration networks. Proc Natl Acad Sci USA 98:404–409. doi: 10.1073/pnas.98.2.404 CrossRefPubMedCentralPubMedGoogle Scholar
  53. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256. doi: 10.1137/S003614450342480 CrossRefGoogle Scholar
  54. Newman MEJ (2004) Coauthorship networks and patterns of scientific collaboration. Proc Natl Acad Sci USA 101:5200–5205. doi: 10.1073/pnas.0307545100 CrossRefPubMedCentralPubMedGoogle Scholar
  55. Newman MEJ (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74:036104. doi: 10.1103/PhysRevE.74.036104 CrossRefGoogle Scholar
  56. Niedenthal P, Auxiette C, Nugier A, Dalle N, Bonin P, Fayol M (2004) A prototype analysis of the French category “émotion”. Cognit Emot 18:289–312. doi: 10.1080/02699930341000086 CrossRefGoogle Scholar
  57. Öhman A (2008) Fear and anxiety: overlaps and dissociation. In: Lewis M, Haviland-Jones JM, Feldman-Barrett L (eds) Handbook of emotions, 3rd edn. Guilford Press, New York, pp 709–729Google Scholar
  58. Petersen AM, Tenenbaum JN, Havlin S, Stanley HE, Perc M (2012) Languages cool as they expand: allometric scaling and the decreasing need for new words. Sci Rep 2:943. doi: 10.1038/srep00943 PubMedCentralPubMedGoogle Scholar
  59. Raphael B, Minkov C (1999) Abnormal grief. Curr Opin Psychiatry 12:99–102CrossRefGoogle Scholar
  60. Reisenzein R (2000) The subjective experience of surprise. In: Bless H, Forgas JP (eds) The message within: the role of subjective experience in social cognition and behavior. Psychology Press, Philadelphia, pp 262–279Google Scholar
  61. Shaver PR, Schwartz J, Kirson D, O’Connor C (1987) Emotion knowledge: further exploration of a prototype approach. J Pers Soc Psychol 52:1061–1086CrossRefPubMedGoogle Scholar
  62. Shaver PR, Murdaya U, Fraley RC (2001) Structure of the Indonesian emotion lexicon. Asian J Soc Psychol 4:201–224. doi: 10.1111/1467-839X.00086 CrossRefGoogle Scholar
  63. Shiota MN, Keltner D (2005) What do emotion words represent? Psychol Inqui 16:32–37Google Scholar
  64. Solé RV, Corominas-Murta B, Valverde S, Steels L (2010) Language networks: their structure, function, and evolution. Complexity 15:20–26. doi: 10.1002/cplx.20305 CrossRefGoogle Scholar
  65. Steyvers M, Tenenbaum JB (2005) The large-scale structure of semantic networks: statistical analyses and a model of semantic growth. Cognit Sci 29:41–78. doi: 10.1207/s15516709cog2901_3 CrossRefGoogle Scholar
  66. Thompson CP (1985) Memory for unique personal events: effect of pleasantness. Motiv Emot 9:277–289CrossRefGoogle Scholar
  67. Toivonen R, Kivelä K, Saramäki J, Viinikainen M, Vanhatalo M, Sams M (2012) Networks of emotion concepts. PLoS ONE 7:e28883. doi: 10.1371/journal.pone.0028883 CrossRefPubMedCentralPubMedGoogle Scholar
  68. Tsonis AA, Schultz C, Tsonis PA (1997) Zipf’s law and the structure and evolution of languages. Complexity 2:12–13CrossRefGoogle Scholar
  69. Wagenaar WA (1986) My memory: a study of autobiographical memory over six years. Cognit Psychol 18:225–252CrossRefGoogle Scholar
  70. Wang B, Cao L, Suzuki H, Aihara K (2012) Safety-information-driven human mobility patterns with metapopulation epidemic dynamics. Sci Rep 2:887. doi: 10.1038/srep00887 PubMedCentralPubMedGoogle Scholar
  71. Wasserman S, Faust K (1994) Social networks analysis: methods and applications. Cambridge University Press, OxfordCrossRefGoogle Scholar
  72. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442CrossRefPubMedGoogle Scholar
  73. Williams RJ, Berlow EL, Dunne JA, Barabási A-L, Martinez ND (2002) Two degrees of separation in complex food webs. Proc Natl Acad Sci USA 99:12913–12916. doi: 10.1073/pnas.192448799 CrossRefPubMedCentralPubMedGoogle Scholar
  74. Zammuner VL (1998) Concepts of emotion: “Emotionness”, and dimensional ratings of Italian emotion words. Cognit Emot 12:243–272CrossRefGoogle Scholar
  75. Zanette D, Montemurro M (2005) Dynamics of text generation with realistic Zipf’s distribution. J Quant Linguist 12:29–40. doi: 10.1080/09296170500055293 CrossRefGoogle Scholar
  76. Zipf GK (1949) Human behavior and the principle of least effort. Addison-Wesley, CambridgeGoogle Scholar

Copyright information

© Marta Olivetti Belardinelli and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PsychologyDoshisha UniversityKyotoJapan
  2. 2.Department of PsychologyUniversity of CincinnatiCincinnatiUSA
  3. 3.Department of Business AdministrationTezukayama UniversityNaraJapan

Personalised recommendations