Cognitive Processing

, Volume 16, Issue 1, pp 57–67 | Cite as

Are judgments for action verbs and point-light human actions equivalent?

  • Christel Bidet-IldeiEmail author
  • Lucette Toussaint
Research Report


The aim of the present study was to examine whether the ability to judge action words and the ability to judge human actions share common mechanisms. With this purpose in mind, we proposed both a lexical and an action decision task to twenty-four healthy participants. For both tasks, the participants had to judge whether the stimulus that was presented (a letter string or a point-light sequence) was valid or not (i.e. a word vs. a pseudo-word, an action vs. a pseudo-action). The data analysis showed that the action decision task has common characteristics with the lexical decision task. As for verbal material, judgements of pseudo-actions were slower than judgements for actions. Moreover, we demonstrated that the ability to judge an action verb was positively correlated with the ability to judge a point-light human action, whereas no significant correlation appeared between nouns and point-light judgements abilities. This dissociation supports the argument that the judgement of action words and the judgement of human actions share a common but specific basis through the involvement of motor representations.


Action words Judgement ability Point-light human actions Sensorimotor representations 



We thank Mathilde Vinel, who helped us to build the stimuli and recruit the participants and Arnaud Badets for his helpful comments.


  1. Andres M, Olivier E, Badets A (2008) Actions, words, and numbers: a motor contribution to semantic processing? Curr Dir Psychol Sci 17(5):313–317CrossRefGoogle Scholar
  2. Aravena P, Hurtado E, Riveros R, Cardona JF, Manes F, Ibanez A (2010) Applauding with closed hands: neural signature of action-sentence compatibility effects. [Clinical Trial Research Support, Non-U.S. Gov’t]. PLoS One 5(7):e11751. doi: 10.1371/journal.pone.0011751 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Aziz-Zadeh L, Wilson SM, Rizzolatti G, Iacoboni M (2006) Congruent embodied representations for visually presented actions and linguistic phrases describing actions. Curr Biol 16(18):1818–1823PubMedCrossRefGoogle Scholar
  4. Bak TH, O’Donovan DG, Xuereb JH, Boniface S, Hodges JR (2001) Selective impairment of verb processing associated with pathological changes in Brodmann areas 44 and 45 in the motor neurone disease-dementia-aphasia syndrome. Brain 124(Pt 1):103–120PubMedCrossRefGoogle Scholar
  5. Barsalou LW (1999) Perceptual symbol systems. [Research Support, U.S. Gov’t, Non-P.H.S. Review]. Behav Brain Sci 22(4): 577–609; Discussion 610–560Google Scholar
  6. Barsalou LW (2009) Simulation, situated conceptualization, and prediction. Philos Trans R Soc Lond B Biol Sci 364(1521):1281–1289. doi: 10.1098/rstb.2008.0319 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bidet-Ildei C, Méary D, Orliaguet, JP (2006) Visual perception of elliptic movements in 7-to-11 year old children: Evidence of motor-perceptual interactions. Curr psychol Lett 2(19):2–9Google Scholar
  8. Bidet-Ildei C, Chauvin A, Coello Y (2010) Observing or producing a motor action improves later perception of biological motion: evidence for a gender effect. Acta Psychol (Amst) 134(2):215–224. doi: 10.1016/j.actpsy.2010.02.002 CrossRefGoogle Scholar
  9. Bidet-Ildei C, Sparrow L, Coello Y (2011) Reading action word affects the visual perception of biological motion. Acta Psychol (Amst) 137(3):330–334. doi: 10.1016/j.actpsy.2011.04.001 CrossRefGoogle Scholar
  10. Boulenger V, Roy AC, Paulignan Y, Deprez V, Jeannerod M, Nazir TA (2006) Cross-talk between language processes and overt motor behavior in the first 200 msec of processing. J Cogn Neurosci 18(10):1607–1615PubMedCrossRefGoogle Scholar
  11. Boulenger V, Mechtouff L, Thobois S, Broussolle E, Jeannerod M, Nazir TA (2008) Word processing in Parkinson’s disease is impaired for action verbs but not for concrete nouns. Neuropsychologia 46(2):743–756. doi: 10.1016/j.neuropsychologia.2007.10.007 PubMedCrossRefGoogle Scholar
  12. Cardona JF, Gershanik O, Gelormini-Lezama C, Houck AL, Cardona S, Kargieman L, Ibanez A (2013) Action-verb processing in Parkinson’s disease: new pathways for motor-language coupling. [Research Support, Non-U.S. Gov’t Review]. Brain Struct Funct 218(6):1355–1373. doi: 10.1007/s00429-013-0510-1 PubMedCrossRefGoogle Scholar
  13. Casile A, Giese MA (2006) Nonvisual motor training influences biological motion perception. Curr Biol 16(1):69–74PubMedCrossRefGoogle Scholar
  14. Chary C, Meary D, Orliaguet JP, David D, Moreaud O, Kandel S (2004) Influence of motor disorders on the visual perception of human movements in a case of peripheral dysgraphia. Neurocase 10(3):223–232PubMedCrossRefGoogle Scholar
  15. Coello Y, Bidet-Ildei C (2012) Motor representation and language in space, object, and movement perception. In: Coello Y, Bartolo A (eds) Language and action in cognitive neuroscience. Psychology Press, LondonGoogle Scholar
  16. Cotelli M, Borroni B, Manenti R, Alberici A, Calabria M, Agosti C, Cappa SF (2006) Action and object naming in frontotemporal dementia, progressive supranuclear palsy, and corticobasal degeneration. Neuropsychology 20(5):558–565PubMedCrossRefGoogle Scholar
  17. de Vega M, Leon I, Hernandez JA, Valdes M, Padron I, Ferstl EC (2014) Action sentences activate sensory motor regions in the brain independent of their status of reality. J Cogn Neurosci. doi: 10.1162/jocn_a_00559 PubMedCentralGoogle Scholar
  18. Dehaene S, Cohen L, Sigman M, Vinckier F (2005) The neural code for written words: a proposal. [Review]. Trends Cogn Sci 9(7):335–341. doi: 10.1016/j.tics.2005.05.004 PubMedCrossRefGoogle Scholar
  19. Fadiga L, Craighero L, D’Ausilio A (2009) Broca’s area in language, action, and music. Ann N Y Acad Sci 1169:448–458PubMedCrossRefGoogle Scholar
  20. Fischer MH, Zwaan RA (2008) Embodied language: a review of the role of the motor system in language comprehension. Q J Exp Psychol (Colchester) 61(6):825–850CrossRefGoogle Scholar
  21. Gazzola V, Keysers C (2009) The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cereb Cortex 19(6):1239–1255PubMedCentralPubMedCrossRefGoogle Scholar
  22. Gentilucci M (2003) Object motor representation and language. Exp Brain Res 153(2):260–265PubMedCrossRefGoogle Scholar
  23. Gilaie-Dotan, S., Bentin, S., Harel, M., Rees, G., & Saygin, A. P. (2011). Normal form from biological motion despite impaired ventral stream function. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Neuropsychologia 49(5): 1033–1043. doi: 10.1016/j.neuropsychologia.2011.01.009
  24. Glover S, Dixon P (2002) Semantics affect the planning but not control of grasping. Exp Brain Res 146(3):383–387PubMedCrossRefGoogle Scholar
  25. Goodale MA (1998) Vision for perception and vision for action in the primate brain. [Review]. Novartis Found Symp 218: 21–34; Discussion 34–29Google Scholar
  26. Graf M, Reitzner B, Corves C, Casile A, Giese M, Prinz W (2007) Predicting point-light actions in real-time. Neuroimage 36(Suppl 2):T22–T32PubMedCrossRefGoogle Scholar
  27. Grainger J, Jacobs AM (1996) Orthographic processing in visual word recognition: a multiple read-out model. Psychol Rev 103(3):518–565PubMedCrossRefGoogle Scholar
  28. Ibanez A, Cardona JF, Dos Santos YV, Blenkmann A, Aravena P, Roca M,… Bekinschtein T (2013) Motor-language coupling: direct evidence from early Parkinson’s disease and intracranial cortical recordings. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Cortex 49(4): 968–984. doi: 10.1016/j.cortex.2012.02.014
  29. Jirak D, Menz MM, Buccino G, Borghi AM, Binkofski F (2010) Grasping language–a short story on embodiment. Conscious Cogn 19(3):711–720. doi: 10.1016/j.concog.2010.06.020 PubMedCrossRefGoogle Scholar
  30. Johansson G (1973) Visual perception of biological motion and a model for its analysis. Percept Psychophys 14:201–211CrossRefGoogle Scholar
  31. Khader PH, Jost K, Mertens M, Bien S, Rosler F (2010) Neural correlates of generating visual nouns and motor verbs in a minimal phrase context. Brain Res 1318:122–132PubMedCrossRefGoogle Scholar
  32. Liepelt R, Dolk T, Prinz W (2012) Bidirectional semantic interference between action and speech. Psychol Res 76(4):446–455. doi: 10.1007/s00426-011-0390-z PubMedCrossRefGoogle Scholar
  33. Lin N, Lu X, Fang F, Han Z, Bi Y (2011) Is the semantic category effect in the lateral temporal cortex due to motion property differences? [Research Support, Non-U.S. Gov’t]. Neuroimage 55(4): 1853–1864. doi:  10.1016/j.neuroimage.2011.01.039
  34. Marangolo P, Bonifazi S, Tomaiuolo F, Craighero L, Coccia M, Altoe G, Cantagallo A (2010) Improving language without words: first evidence from aphasia. Neuropsychologia 48(13):3824–3833. doi: 10.1016/j.neuropsychologia.2010.09.025 PubMedCrossRefGoogle Scholar
  35. Marangolo P, Cipollari S, Fiori V, Razzano C, Caltagirone C (2012) Walking but not barking improves verb recovery: implications for action observation treatment in aphasia rehabilitation. PLoS One 7(6):e38610. doi: 10.1371/journal.pone.0038610 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Martel L, Bidet-Ildei C, Coello Y (2011) Anticipating the terminal position of an observed action: effect of kinematic, structural, and identity information. Vis Cognit 19(6):785–798CrossRefGoogle Scholar
  37. Miller LE, Saygin AP (2013) Individual differences in the perception of biological motion: links to social cognition and motor imagery. Cognition 128(2):140–148. doi: 10.1016/j.cognition.2013.03.013 PubMedCrossRefGoogle Scholar
  38. Nazir TA, Boulenger V, Roy A, Silber B, Jeannerod M, Paulignan Y (2008) Language-induced motor perturbations during the execution of a reaching movement. Q J Exp Psychol (Colchester) 61(6):933–943CrossRefGoogle Scholar
  39. New B, Pallier C, Ferrand L, Matos R (2001) Une base de données lexicales du français contemporain sur internet: LEXIQUE. L’Année psychologique 101:447–462.
  40. Peran P, Rascol O, Demonet JF, Celsis P, Nespoulous JL, Dubois B, Cardebat D (2003) Deficit of verb generation in nondemented patients with Parkinson’s disease. Mov Disord 18(2):150–156PubMedCrossRefGoogle Scholar
  41. Peran P, Demonet JF, Pernet C, Cardebat D (2004) Verb and noun generation tasks in Huntington’s disease. Mov Disord 19(5):565–571PubMedCrossRefGoogle Scholar
  42. Pulvermüller F (2013) How neurons make meaning: brain mechanisms for embodied and abstract-symbolic semantics. Trends Cognit Sci 17(9):458–470. doi: 10.1016/j.tics.2013.06.004 CrossRefGoogle Scholar
  43. Quemart P, Casalis S, Cole P (2011) The role of form and meaning in the processing of written morphology: a priming study in French developing readers. [Research Support, Non-U.S. Gov’t]. J Exp Child Psychol 109(4):478–496. doi: 10.1016/j.jecp.2011.02.008 PubMedCrossRefGoogle Scholar
  44. Shipley TF, Brumberg JS (2005) Markerless motion-capture for point-light displays Available at
  45. Simion F, Regolin L, Bulf H (2008) A predisposition for biological motion in the newborn baby. Proc Natl Acad Sci 105(2):809–813PubMedCentralPubMedCrossRefGoogle Scholar
  46. Springer A, Prinz W (2010). Action semantics modulate action prediction. Q J Exp Psychol (Colchester) 63(11):2141–2158. doi: 10.1080/17470211003721659
  47. Springer A, Huttenlocher A, Prinz W (2012) Language-induced modulation during the prediction of others’ actions. Psychol Res. doi: 10.1007/s00426-012-0411-6 Google Scholar
  48. Vallortigara G, Regolin L, Marconato F (2005) Visually inexperienced chicks exhibit spontaneous preference for biological motion patterns. PLoS Biol 3(7):e208PubMedCentralPubMedCrossRefGoogle Scholar
  49. Willems RM, Toni I, Hagoort P, Casasanto D (2010) Neural dissociations between action verb understanding and motor imagery. J Cogn Neurosci 22(10):2387–2400. doi: 10.1162/jocn.2009.21386 PubMedCrossRefGoogle Scholar
  50. Wilson M (2002) Six views of embodied cognition. [Review]. Psychon Bull Rev 9(4):625–636PubMedCrossRefGoogle Scholar

Copyright information

© Marta Olivetti Belardinelli and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Centre de recherches sur la cognition et l’apprentissage, UMR 7295-CNRS, CeRCA/MSHSUniversité de PoitiersPoitiers Cedex 9France

Personalised recommendations