Metaphorical motion in mathematical reasoning: further evidence for pre-motor implementation of structure mapping in abstract domains

Abstract

The theory of computation and category theory both employ arrow-based notations that suggest that the basic metaphor “state changes are like motions” plays a fundamental role in all mathematical reasoning involving formal manipulations. If this is correct, structure-mapping inferences implemented by the pre-motor action planning system can be expected to be involved in solving any mathematics problems not solvable by table lookups and number line manipulations alone. Available functional imaging studies of multi-digit arithmetic, algebra, geometry and calculus problem solving are consistent with this expectation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adámek J, Herrlich H, Strecker GE (2004). Abstract and concrete categories (Web edition). Available from http://katmat.math.uni-bremen.de/acc/acc.htm. Accessed Nov. 26, 2012

  2. Anderson JR (2005) Human symbol manipulation within an integrated cognitive architecture. Cogn Sci 29:313–341

    PubMed  Article  Google Scholar 

  3. Anderson JR, Betts S, Ferris JL, Fincham JM (2011) Cognitive and metacognitive activity in mathematical problem solving: prefrontal and parietal patterns. Cogn Affect Behav Neurosci 11:52–67

    PubMed  Article  Google Scholar 

  4. Aziz-Zadeh L, Damasio A (2008) Embodied semantics for actions: findings from functional brain imaging. J Physiol Paris 102:35–39

    PubMed  Article  Google Scholar 

  5. Baez JC, Stay M (2011) Physics, topology, logic and computation: a Rosetta stone. New structures for physics: lecture notes in physics 813. Springer, Berlin, pp. 95–172

  6. Bahlmann J, Schubotz RI, Friederici AD (2008) Hierarchical artificial grammar processing engages Broca’s area. NeuroImage 42:525–534

    PubMed  Article  Google Scholar 

  7. Blair KP, Schwartz DL (2012) A value of concrete learning materials in adolescence. In: Reyna VF, Chapman S, Dougherty M, Confrey J (eds) The adolescent brain: learning, reasoning, and decision making. APA, Washington, pp 95–122

    Google Scholar 

  8. Bubic A, von Cramon DY, Schubotz RI (2010) Prediction, cognition and the brain. Front Psychol Human Neurosci 4:25. doi:10.3389/fnhum.2010.00025

    Google Scholar 

  9. Bunge SA, Wendelken C, Badre D, Wagner AD (2005) Analogical reasoning and prefrontal cortex: evidence for separate retrieval and integration mechanisms. Cereb Cortex 5:239–249

    Google Scholar 

  10. Butterworth B (2010) Foundational numerical capacities and the origins of dyscalculia. Trends Cogn Sci 14:534–541

    PubMed  Article  Google Scholar 

  11. Cantlon J, Brannon E, Carter E, Pelphrey K (2006) Functional imaging of numerical processing in adults and 4-yr-old children. PLoS Biol 4:0844–0854

    Article  CAS  Google Scholar 

  12. Catmur C, Walsh V, Heyes C (2007) Sensorimotor learning configures the human mirror system. Curr Biol 17:1527–1531

    PubMed  Article  CAS  Google Scholar 

  13. Cattell RB (1971) Abilities: their structure, growth and action. Houghton Mifflin, Boston

    Google Scholar 

  14. Chatterjee A (2010) Disembodying cognition. Lang Cogn 2:79–116

    PubMed  Google Scholar 

  15. Cho S, Moody TD, Fernandino F, Mumford JA, Poldrack RA, Cannon TD, Knowlton BJ, Holyoak KJ (2010) Common and dissociable prefrontal loci associated with component mechanisms of analogical reasoning. Cereb Cortex 20:524–533

    PubMed  Article  Google Scholar 

  16. Cohen Kadosh RC, Walsh V (2009) Numerical representation in the parietal lobes: abstract or not abstract? Behav Brain Sci 32:313–328

    PubMed  Article  Google Scholar 

  17. Cummins R (1983) The nature of psychological explanation. MIT, Cambridge, MA

    Google Scholar 

  18. Danker JF, Anderson JR (2007) The roles of prefrontal and posterior parietal cortex in algebra problem solving: a case of using cognitive modeling to inform neuroimaging data. NeuroImage 35:1365–1377

    PubMed  Article  Google Scholar 

  19. De Pisapia N, Braver TS (2008) Preparation for integration: the role of anterior prefrontal cortex in working memory. NeuroReport 19:15–19

    PubMed  Article  Google Scholar 

  20. Dehaene S (2011) The number sense, 2nd edn. Oxford University Press, New York

    Google Scholar 

  21. Dehaene S, Piazza M, Pinel P, Cohen L (2003) Three parietal circuits for number processing. Cogn Neuropsychol 20:487–506

    PubMed  Article  Google Scholar 

  22. Desai RH, Binder JR, Conant LL, Mano QR, Seidenberg MS (2011) The neural career of sensory-motor metaphors. J Cogn Neurosci 23:2376–2386

    PubMed  Article  Google Scholar 

  23. Eilenberg S, Mac Lane S (1945) Relations between homology and homotopy groups of spaces. Ann Math 46:480–509

    Article  Google Scholar 

  24. Engel A, Burke M, Fiehler K, Bien S, Rosler F (2007) How moving objects become animated: the human mirror system assimilates non-biological movement patterns. Soc Neurosci 3:368–387

    Article  Google Scholar 

  25. Falkenhainer B, Forbus KD, Gentner D (1989) The structure mapping engine: algorithm and examples. Artif Intell 41:1–63

    Article  Google Scholar 

  26. Fedorenko E, Nieto-Castañón A, Kanwisher N (2012) Syntactic processing in the human brain: what we know, what we don’t know, and a suggestion for how to proceed. Brain Lang 120:187–207

    PubMed  Article  Google Scholar 

  27. Fields C (2011) Implementation of structure-mapping inference by event-file binding and action planning: a model of tool-improvisation analogies. Psychol Res 75:129–142

    PubMed  Article  Google Scholar 

  28. Fields C (2012) Motion as manipulation: implementation of force-motion analogies by event-file binding and action planning. Cogn Process 13:231–241

    PubMed  Article  Google Scholar 

  29. Fischer MH (2012) A hierarchical view of grounded, embodied, and situated numerical cognition. Cogn Process 13:161–164

    Article  Google Scholar 

  30. Fischer MH, Brugger P (2011) When digits help digits: spatial-numerical associations point to finger counting as prime example of embodied cognition. Front Psychol Cogn 2:260. doi:10.3389/fpsyg.2011.00260

    Google Scholar 

  31. Fleming TM, Beran MJ, Thompson RKR, Kleider HM, Washburn DA (2008) What meaning means for same and different: analogical reasoning in humans (Homo sapiens), chimpanzees (Pan troglodytes) and rhesus monkeys (Macaca mulatta). J Comp Psychol 122:176–185

    Article  Google Scholar 

  32. Galton A (2006) The Church-Turing thesis: still valid after all these years? Appl Math Comput 178:93–102

    Article  Google Scholar 

  33. Gentner D (1983) Structure-mapping: a theoretical framework for analogy. Cogn Sci 7:155–170

    Article  Google Scholar 

  34. Gentner D (2003) Why we’re so smart. In: Gentner D, Goldin-Meadow S (eds) Language and mind: advances in the study of language and thought. MIT Press, Cambridge, pp 195–235

    Google Scholar 

  35. Goldberg RP (1974) A survey of virtual machine research. IEEE Comput 7(6):34–45

    Article  Google Scholar 

  36. Gottfried B (2012) Using space to represent data: diagrammatic reasoning. Cogn Process 13:371–373

    PubMed  Article  Google Scholar 

  37. Gray JR, Chabris CF, Braver TS (2003) Neural mechanisms of general fluid intelligence. Nat Neurosci 6:316–322

    PubMed  Article  CAS  Google Scholar 

  38. Green A, Fugelsang J, Kraemer D, Shamosh N, Dunbar K (2006) Frontopolar cortex mediates abstract integration in analogy. Brain Res 1096:125–137

    PubMed  Article  CAS  Google Scholar 

  39. Heyes C (2010) Where do mirror neurons come from? Neurosci Biobehav Rev 34:575–583

    PubMed  Article  Google Scholar 

  40. Heyes C (2012) Grist and mills: on the cultural origins of cultural learning. Philos Trans R Soc B 367:2181–2191

    Article  Google Scholar 

  41. Holyoak K (2005) Analogy. In: Holyoak K, Morrison R (eds) The Cambridge handbook of thinking and reasoning. Cambridge University Press, Cambridge, pp 117–142

    Google Scholar 

  42. Hommel B (2004) Event files: feature binding in and across perception and action. Trends Cogn Sci 8:494–500

    PubMed  Article  Google Scholar 

  43. Hopcroft JE, Ullman JD (1979) Introduction to automata, languages and computation. Addison-Wesley, Boston

    Google Scholar 

  44. Kellman PJ, Massey CM, Son JY (2009) Perceptual learning modules in mathematics: enhancing students’ pattern recognition, structure extraction, and fluency. Topics Cogn Sci 2(2):1–21

    Google Scholar 

  45. Kennedy EH, Fragaszy DM (2008) Analogical reasoning in a capuchin monkey (Cebus apella). J Comp Psychol 122:167–175

    PubMed  Article  Google Scholar 

  46. Kiefer M, Pulvermüller F (2012) Conceptual representations in mind and brain: theoretical developments, current evidence and future directions. Cortex 48:805–825

    PubMed  Article  Google Scholar 

  47. Knops A, Viarouge A, Dehaene S (2009) Dynamic representations underlying symbolic and nonsymbolic calculation: evidence from the operational momentum effect. Atten Percept Psychophys 71:803–821

    PubMed  Article  Google Scholar 

  48. Knowlton BJ, Holyoak KJ (2009) Prefrontal substrate of human relational reasoning. In: Gazzaniga MS (ed) The cognitive neurosciences. MIT Press, Cambridge, pp 1005–1017

    Google Scholar 

  49. Kosslyn SM, Thompson WL, Ganis G (2006) The case for mental imagery. Oxford University Press, New York

    Google Scholar 

  50. Krawczyk DC (2012) The cognition and neuroscience of relational reasoning. Brain Res 1428:13–23

    PubMed  Article  CAS  Google Scholar 

  51. Krawczyk DC, McClelland MM, Donovan CM (2010) A hierarchy for relational reasoning in the prefrontal cortex. Cortex 47:588–597

    PubMed  Article  Google Scholar 

  52. Krueger F, Spampinato MV, Pardini M, Pajevic S, Wood JN, Weiss GH, Landgraf S, Grafman J (2008) Integral calculus problem solving: an fMRI investigation. NeuroReport 19:1095–1099

    PubMed  Article  Google Scholar 

  53. Lakoff G, Johnson M (1999) Philosophy in the flesh. Basic Books, New York

    Google Scholar 

  54. Lakoff G, Núñez RE (2000) Where mathematics comes from: how the embodied mind brings mathematics into being. Basic Books, New York

    Google Scholar 

  55. Landgraf S, van der Meer E, Krueger F (2010) Cognitive resource allocation for neuronal activity underlying mathematical cognition: a multi-method study. Int J Math Educ 42:579–590

    Article  Google Scholar 

  56. Larkin J, Simon HA (1987) Why a diagram is (sometimes) worth ten thousand words. Cogn Sci 11:65–99

    Article  Google Scholar 

  57. Mac Lane S (1972) Categories for the working mathematician. Springer, Berlin

    Google Scholar 

  58. Makuuchi M, Bahlmann J, Anwander A, Friederici AD (2009) Segregating the core computational faculty of human language from working memory. Proc Natl Acad Sci USA 106:8362–8367

    PubMed  Article  CAS  Google Scholar 

  59. Markman A, Gentner D (2001) Thinking. Annu Rev Psychol 52:223–247

    PubMed  Article  CAS  Google Scholar 

  60. Marr D (1982) Vision. Freeman, New York

    Google Scholar 

  61. Mashal N, Faust M, Hendler T, Jung-Beeman M (2007) An fMRI investigation of the neural correlates underlying the processing of novel metaphoric expressions. Brain Lang 100:115–126

    PubMed  Article  CAS  Google Scholar 

  62. McCrink K, Dehaene S, Dehaene-Lambertz G (2007) Moving along the number line: operational momentum in nonsymbolic arithmetic. Percept Psychophys 69:1324–1333

    PubMed  Article  Google Scholar 

  63. Moscovitch M (2008) The hippocampus as a “stupid”, domain-specific module: implications for theories of recent and remote memory, and of imagination. Can J Exp Psychol 62:62–79

    PubMed  Article  Google Scholar 

  64. Moulton ST, Kosslyn SM (2009) Imagining predictions: mental imagery as mental emulation. Philos Trans R Soc B 364:1273–1280

    Article  Google Scholar 

  65. Mowat E, Davis B (2010) Interpreting embodied mathematics using network theory: implications for mathematics education. Complicity 7:1–31

    Google Scholar 

  66. Nassi JJ, Callaway EM (2009) Parallel processing strategies of the primate visual system. Nat Rev Neurosci 10:360–372

    PubMed  Article  CAS  Google Scholar 

  67. Núñez RE, Lakoff G (2005) The cognitive foundations of mathematics: the role of conceptual metaphor. In: Campbell JID (ed) Handbook of mathematical cognition. Psychology Press, New York, pp 109–124

    Google Scholar 

  68. Piazza M (2010) Neurocognitive start-up tools for symbolic number representations. Trends Cogn Sci 14:542–551

    PubMed  Article  Google Scholar 

  69. Preusse F, van der Meer E, Ullwer D, Brucks M, Krueger F, Wartenburger I (2010) Long-term characteristics of analogical processing in high-school students with high fluid intelligence: an fMRI study. ZDM Math Educ 42:635–647

    Article  Google Scholar 

  70. Preusse F, van der Meer E, Deshpande G, Krueger F, Wartenburger I (2011) Fluid intelligence allows flexible recruitment of the parieto-frontal network in analogical reasoning. Front Psychol Human Neurosci 5:22. doi:10.3389/fnhum.2011.00022

    Google Scholar 

  71. Qin Y, Carter C, Silk E, Stenger VA, Fissell K, Goode A, Anderson JR (2004) The change in brain activation patterns as children learn algebra equation solving. Proc Natl Acad Sci USA 101:5686–5691

    PubMed  Article  CAS  Google Scholar 

  72. Radford L (2009) Why do gestures matter? Sensuous cognition and the palpability of mathematical meanings. Educ Stud Math 70:111–126

    Article  Google Scholar 

  73. Ranganath C (2010) A unified framework for the functional organization of the medial temporal lobes and the phenomenology of episodic memory. Hippocampus 20:1263–1290

    PubMed  Article  Google Scholar 

  74. Richards C (2002) The fundamental design variables of diagramming. In: Anderson M, Meyer B, Olivier P (eds) Diagrammatic representation and reasoning. Springer, Berlin, pp 85–102

    Google Scholar 

  75. Rosenberg-Lee M, Lovett MC, Anderson JR (2009) Neural correlates of arithmetic calculation strategies. Cogn Affect Behav Neurosci 9:270–285

    PubMed  Article  Google Scholar 

  76. Rosenberg-Lee M, Chang TT, Young CB, Wu S, Menon V (2011) Functional dissociations between four basic arithmetic operations in the human posterior parietal cortex: a cytoarchitectonic mapping study. Neuropsychologia 49:2592–2608

    PubMed  Article  Google Scholar 

  77. Santi A, Grodzinsky Y (2007) Working memory and syntax interact in Broca’s area. NeuroImage 37:8–17

    PubMed  Article  Google Scholar 

  78. Schmidt GL, Kranjec A, Cardillo ER, Chatterjee A (2010) Beyond laterality: a critical assessment of research on the neural basis of metaphor. J Int Neuropsychol Soc 16:1–5

    PubMed  Article  Google Scholar 

  79. Schubotz RI (2007) Prediction of external events with our motor system: towards a new framework. Trends Cogn Sci 11:211–218

    PubMed  Article  Google Scholar 

  80. Schubotz R, von Cramon DY (2004) Sequences of abstract nonbiological stimuli share ventral premotor cortex with action observations and imagery. J Neurosci 24:5467–5474

    PubMed  Article  CAS  Google Scholar 

  81. Searle JR (1980) Minds, brains and programs. Behav Brain Sci 3:417–458

    Article  Google Scholar 

  82. Simons JS, Henson RNA, Gilbert SJ, Fletcher PC (2008) Separable forms of reality monitoring supported by anterior prefrontal cortex. J Cogn Neurosci 20:447–457

    PubMed  Article  Google Scholar 

  83. Stoy JE (1977) Denotational semantics: the Scott-Strachey approach to programming language theory. MIT, Cambridge

    Google Scholar 

  84. Tanenbaum AS (1976) Structured computer organization. Prentice Hall, Upper Saddle River

    Google Scholar 

  85. Turing AM (1937) On computable numbers, with an application to the Entscheidungsproblem. Proc Lond Math Soc 42:230–265

    Article  Google Scholar 

  86. Volle E, Gilbert SJ, Benoit RG, Burgess PW (2010) Specialization of the rostral prefrontal cortex for distinct analogy processes. Cereb Cortex 20:2647–2659

    PubMed  Article  Google Scholar 

  87. Wartenburger I, Heekeren HR, Preusse F, Kramer J, van der Meer E (2009) Cerebral correlates of analogical processing and their modulation by training. NeuroImage 48:291–302

    PubMed  Article  Google Scholar 

  88. Watson C, Chatterjee A (2012) A bilateral frontoparietal network underlies visuospatial analogical reasoning. NeuroImage 59:2831–2838

    PubMed  Article  Google Scholar 

  89. Wendelken C, Nakhabenko D, Donohue SE, Carter CS, Bunge SA (2008) “Brain is to thought as stomach is to?’’ Investigating the role of rostrolateral prefrontal cortex in relational reasoning. J Cogn Neurosci 20:682–693

    PubMed  Article  Google Scholar 

  90. Wigner EP (1960) The unreasonable effectiveness of mathematics in the natural sciences. Commun Pure Appl Math 13:1–14

    Article  Google Scholar 

  91. Wood G, Willmes K, Nuerk H-C, Fischer MH (2008) On the cognitive link between space and number: a meta-analysis of the SNARC effect. Psychol Sci Q 50:489–525

    Google Scholar 

Download references

Acknowledgments

Thanks to Action Editor Martin Fischer and two anonymous referees for helpful comments on an earlier version of this paper.

Conflict of interest

The author declares that he has no financial or other conflicts of interest with regard to the research reported here.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chris Fields.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fields, C. Metaphorical motion in mathematical reasoning: further evidence for pre-motor implementation of structure mapping in abstract domains. Cogn Process 14, 217–229 (2013). https://doi.org/10.1007/s10339-013-0555-3

Download citation

Keywords

  • Analogy
  • Category theory
  • Computation
  • Embodied cognition
  • Event files
  • Parietal cortex