Skip to main content
Log in

Predictive coding: an account of the mirror neuron system

  • Review
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

Is it possible to understand the intentions of other people by simply observing their actions? Many believe that this ability is made possible by the brain’s mirror neuron system through its direct link between action and observation. However, precisely how intentions can be inferred through action observation has provoked much debate. Here we suggest that the function of the mirror system can be understood within a predictive coding framework that appeals to the statistical approach known as empirical Bayes. Within this scheme the most likely cause of an observed action can be inferred by minimizing the prediction error at all levels of the cortical hierarchy that are engaged during action observation. This account identifies a precise role for the mirror system in our ability to infer intentions from actions and provides the outline of the underlying computational mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Box 1
Box 2
Box 3
Fig. 2

Similar content being viewed by others

References

  • Allison T, Puce A, McCarthy G (2000) Social perception from visual cues: role of the STS region. Trends Cogn Sci 4:267–278

    Article  PubMed  Google Scholar 

  • Arbib MA, Mundhenk TN (2005) Schizophrenia and the mirror-neuron system: an essay. Neuropsychologia 43:268–280

    Article  PubMed  Google Scholar 

  • Chater N, Manning CD (2006) Probabilistic models of language processing and acquisition. Trends Cogn Sci 10(7):335–344

    Article  PubMed  Google Scholar 

  • Dapretto M, Davies MS, Pfeifer JH, Scott AA, Sigman M, Bookheimer SY, Iacoboni M (2006) Understanding emotions in others: mirror-neuron dysfunction in children with autism spectrum disorders. Nat Neurosci 9:28–30

    Article  CAS  PubMed  Google Scholar 

  • Di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91:176–180

    CAS  PubMed  Google Scholar 

  • Flanagan JR, Vetter P, Johansson RS, Wolpert DM (2003) Prediction precedes control in motor learning. Curr Biol 13(2):146–150

    Article  CAS  PubMed  Google Scholar 

  • Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308:662–667

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ (2002) Funtional integration and inference in the brain. Prog Neurobiol 68:113–143

    Article  PubMed  Google Scholar 

  • Friston KJ (2003) Learning and inference in the brain. Neural Netw 16:1325–1352

    Article  PubMed  Google Scholar 

  • Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci 360:815–836

    Article  PubMed  Google Scholar 

  • Frith CD, Frith U (1999) Interacting minds—a biological basis. Science 286:1692–1695

    Article  CAS  PubMed  Google Scholar 

  • Gallese V (2006) Embodied simulation: from mirror neuron systems to interpersonal relations. In: Bock G, Goode J (eds) Empathy and fairness. Novartis Foundation, San Diego

  • Gallese V, Goldman A (1998) Mirror-neurons and the simulation theory of mind reading. Trends Cogn Sci 2:493–501

    Article  Google Scholar 

  • Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119:593–609

    Article  PubMed  Google Scholar 

  • Gallese V, Fogassi L, Fadiga L, Rizzolatti G (2002) Action representation and the inferior parietal lobule. In: Prinz W, Hommel B (eds) Attention and performance XIX. Common mechanisms in perception and action. Oxford University Press, Oxford, pp 247–266

    Google Scholar 

  • Gallese V, Keysers C, Rizzolatti G (2004) A unifying view of the basis of social cognition. Trends Cogn Sci 8:396–403

    Article  PubMed  Google Scholar 

  • Grossman E, Donnelly M, Price R, Pickens D, Morgan V, Neighbor G, Blake R (2000) Brain areas involved in perception of biological motion. J Cogn Neurosci 12:711–720

    Article  CAS  PubMed  Google Scholar 

  • Hamilton AF, Grafton ST (2006) Goal representation in human anterior intraparietal sulcus. J Neurosci 26:1133–1137

    Article  CAS  PubMed  Google Scholar 

  • Hamilton AF, Grafton ST (2007) The motor hierarchy: from kinematics to goals and intentions. In: Rosetti Y, Kawato M, Haggard P (eds) Attention and performance xxii (in press)

  • Harries MH, Perrett DI (1991) Visual processing of faces in temporal cortex: physiological evidence for a modular organization and possible anatomical correlates. J Cogn Neurosci 3:9–24

    Article  Google Scholar 

  • Iacoboni M (2005) Neural mechanisms of imitation. Curr Opin Neurobiol 15:632–637

    Article  CAS  PubMed  Google Scholar 

  • Iacoboni M, Koski LM, Brass M, Bekkering H, Woods RP, Dubeau MC, Mazziotta JC, Rizzolatti G (2001) Reafferent copies of imitated actions in the right superior temporal cortex. Proc Natl Acad Sci USA 98(24):13995–13999

    Article  CAS  PubMed  Google Scholar 

  • Iacoboni M, Molnar-Szakacs I, Gallese V, Buccino G, Mazziotta JC, Rizzolatti G (2005) Grasping the intentions of others with one’s own mirror neuron system. PLoS Biol 3(3):e79

    Article  PubMed  CAS  Google Scholar 

  • Jacob P, Jeannerod M (2005) The motor theory of social cognition: a critique. Trends Cogn Sci 9:21–25

    Article  PubMed  Google Scholar 

  • James W (1890) Principles of psychology. Holt, New York

    Google Scholar 

  • Jeannerod M (1994) The representing brain–neural correlates of motor intention and imagery. Behav Br Sci 17:187–202

    Article  Google Scholar 

  • Keysers C, Perrett DI (2004) Demystifying social cognition: a Hebbian perspective. Trends Cogn Sci 8:501–507

    Article  PubMed  Google Scholar 

  • Luppino G, Murata A, Govoni P, Matelli M (1999) Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4). Exp Brain Res 128:181–187

    Article  CAS  PubMed  Google Scholar 

  • Miall RC (2003) Connecting mirror neurons and forward models. Neuroreport 14(17):2135–2137

    Article  CAS  PubMed  Google Scholar 

  • Nishitani N, Hari R (2000) Temporal dynamics of cortical representation for action. Proc Natl Acad Sci USA 97(2):913–918

    Article  CAS  PubMed  Google Scholar 

  • Nishitani N, Hari R (2002) Viewing lip forms: cortical dynamics. Neuron 36(6):1211–1220

    Article  CAS  PubMed  Google Scholar 

  • Oberman LM, Hubbard EM, McCleery JP, Altschuler EL, Ramachandran VS, Pineda JA (2005) EEG evidence for mirror-neuron dysfunction in autism spectrum disorders. Brain Res Cogn Brain Res 24:190–198

    Article  PubMed  Google Scholar 

  • Oram MW, Perrett DI (1994) Responses of anterior superior temporal polysensory (STPa) neurons to biological motion stimuli. J Cogn Neurosci 6:99–116

    Article  Google Scholar 

  • Prinz W (1997) Perception and action planning. Eur J Cogn Psych 9:129–154

    Article  Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2:661–670

    Article  CAS  PubMed  Google Scholar 

  • Rushworth MFS, Behrens TEJ, Johansen-Berg H (2006) Connection patterns distinguish three regions of human parietal cortex. Cereb Cortex 16:1418–1430

    Article  CAS  PubMed  Google Scholar 

  • Saxe R (2005) Against simulation: the argument from error. Trends Cogn Sci 9:174–179

    Article  PubMed  Google Scholar 

  • Schütz-Bosbach and Wolfgang Prinz (2007) Prospective coding in event representation (this issue)

  • Seltzer B, Pandya DN (1994) Parietal, temporal, and occipital projections to cortex of the superior temporal sulcus in the rhesus-monkey: a retrograde tracer study. J Comp Neurol 343:445–463

    Article  CAS  PubMed  Google Scholar 

  • Umilta MA, Kohler E, Gallesse V, Fogassi L, Fadiga L, Keysers C, Rizzolatti G (2001) I know what you are doing. A neurophsyiological study. Neuron 31:155–165

    Article  CAS  PubMed  Google Scholar 

  • Wolpert DM, Doya K, Kawato M (2003) A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond B Biol Sci 29:358:593–02

    Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensoriymotor integration. Science 269:1880–1882

    Article  CAS  PubMed  Google Scholar 

  • Wolpert DM, Miall RC (1996) Forward models for physiological motor control. Neural Netw 9:1265–1279

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The Wellcome Trust funded this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Kilner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilner, J.M., Friston, K.J. & Frith, C.D. Predictive coding: an account of the mirror neuron system. Cogn Process 8, 159–166 (2007). https://doi.org/10.1007/s10339-007-0170-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-007-0170-2

Keywords

Navigation