Skip to main content
Log in

Prediction of intent in robotics and multi-agent systems

  • Review
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

Moving beyond the stimulus contained in observable agent behaviour, i.e. understanding the underlying intent of the observed agent is of immense interest in a variety of domains that involve collaborative and competitive scenarios, for example assistive robotics, computer games, robot–human interaction, decision support and intelligent tutoring. This review paper examines approaches for performing action recognition and prediction of intent from a multi-disciplinary perspective, in both single robot and multi-agent scenarios, and analyses the underlying challenges, focusing mainly on generative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acosta-Calderon CA, Hu H (2005) Robot imitation: body schema and body percept. J Appl Bionics Biomech 2(3–):131–48. ISSN 1176–322

    Google Scholar 

  • Aggarwal A, Cai Q (1999) Human motion analysis: a review. Comput Vis Image Underst 73(3):428–440

    Article  Google Scholar 

  • Anderson JR, Boyle CF, Corbett AT, Lewis MW (1990) Cognitive modelling and intelligent tutoring. Artif Intell 42:7–49

    Article  Google Scholar 

  • Arkin RC (1998) Behavior based robotics. MIT Press, Cambridge

  • Beetz M, Kirchlechner B, Lames M (2005) Computerised real-time analysis of football games. Pervasive Comput 4(3):33–39

    Article  Google Scholar 

  • Bekkering H, Wohlschläger A, Gattis M (2000) Imitation of gestures in children is goal-directed. Q J Exp Psychol 53A:153–164

    Article  Google Scholar 

  • Bishop C (2006) Pattern recognition and machine learning. Springer, Heidelberg

  • Blakemore S-J, Decety J (2001) From the perception of action to the understanding of intention. Nat Rev Neurosci 2:561–567

    PubMed  CAS  Google Scholar 

  • Bratman ME (1990) What is Intention? In: Cohen PR, Morgan JL, Pollack ME (eds) Intentions in communication, MIT Press, Cambridge, pp 15–32

    Google Scholar 

  • Bratman ME (1992) Shared cooperative activity. Philos Rev 101(2):327–341

    Article  Google Scholar 

  • Breazeal C, Berlin M, Brooks A, Gray J, Thomaz A (2006) Using perspective taking to learn from ambiguous demonstrations. Rob Auton Syst 54(5):385–393

    Article  Google Scholar 

  • Brooks (1986) A robust layered control system for a mobile robot. IEEE J Robot Autom RA-2, pp 14–3

  • Brooks R, Meltzoff AN (2002) The importance of eyes: how infants interpret adult looking behavior. Dev Psychol 38:958–966

    Article  PubMed  Google Scholar 

  • Brooks R, Meltzoff AN (2005) The development of gaze following and its relation to language. Dev Sci 8:535–543

    Article  PubMed  Google Scholar 

  • Buxton H (2003) Learning and understanding dynamic scene activity: a review. Image Vis Comput 21:125–136

    Article  Google Scholar 

  • Byrne RW, Russon AE (1998) Learning by imitation: a hierarchical approach. Behav Brain Sci 21(5):667–684

    PubMed  CAS  Google Scholar 

  • Cohen PR, Levesque HJ (1990) Intention is choice with commitment. Artif Intell 42:213–261

    Article  Google Scholar 

  • Csibra G, Gergely G (1998) The teleological origins of mentalistic action explanations: a developmental hypothesis. Dev Sci 1:255–259

    Article  Google Scholar 

  • Csibra G, Gergely G (2007) ‘Obsessed with goals– functions and mechanisms of teleological interpretation of actions in humans. Acta Psychologica 124:60–78

    Article  PubMed  Google Scholar 

  • Dearden A, Demiris Y (2005) Learning forward models for robots. In: Proceedings of the international joint conference on artificial intelligence (IJCAI), Edinburgh, pp 1440–445

  • Demiris Y, Hayes G (2002) Imitation as a dual-route process featuring predictive and learning components: a biologically plausible computational model. In: Dautenhahn K, Nehaniv CL (eds) Imitation in animals and artifacts. MIT Press, Cambridge, pp 327–361

    Google Scholar 

  • Demiris Y, Johnson M (2003) Distributed, predictive perception of actions: a biologically inspired robotics architecture for imitation and learning. Connect Sci 15:231–243

    Article  Google Scholar 

  • Demiris Y, Khadhouri B (2006) Hierarchical attentive multiple models for execution and recognition of actions. Rob Auton Syst 54:361–369

    Article  Google Scholar 

  • Demiris Y, Simmons G (2006) Perceiving the unusual: temporal properties of hierarchical motor representations for action perception. Neural Netw 19:272–284

    Article  PubMed  Google Scholar 

  • Devaney M, Ram A (1998) Needles in a haystack: plan recognition in large spatial domains involving multiple agents. In: Proceedings of the 15th national conference on artificial intelligence, AAAI-98, pp 942–47

  • Flanagan JR, Johansson RS (2003) Action plans used in action observation. Nature 424:769–771

    Article  PubMed  CAS  Google Scholar 

  • Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119:593–609

    Article  PubMed  Google Scholar 

  • Gleissner B, Meltzoff AN, Bekkering H (2000) Children’s coding of human action: cognitive factors influencing imitation in 3-year-olds. Dev Sci 3:405–414

    Article  Google Scholar 

  • Grosz BJ, Hunsberger L (2006) The dynamics of intention in collaborative activity. Cogn Syst Res 7:259–272

    Article  Google Scholar 

  • Hamilton A, Grafton ST (2007) The motor hierarchy: from kinematics to goals and intentions. In: Haggard P, Rossetti Y, Kawato M (eds) Sensorimotor foundations of higher cognition, attention and performance XXII, chap 18 (in press)

  • Hesslow G (2002) Conscious thought as simulation of behaviour and perception. Trends Cogn Sci 6(6):242–247

    Article  PubMed  Google Scholar 

  • Hommel B, Musseler J, Aschersleben G, Prinz W (2001) The theory of event coding (TEC): a framework for perception and action planning. Behav Brain Sci 24:849–937

    Article  PubMed  CAS  Google Scholar 

  • Isham V (1981) An introduction to spatial point processes and markov random fields. Int Stat Rev 49:21–43

    Article  Google Scholar 

  • Jackson PL, Meltzoff AN, Decety J (2006) Neural circuits involved in imitation and perspective-taking. Neuroimage 31:429–439

    Article  PubMed  Google Scholar 

  • Jain AK, Zhong Y, Dubuisson-Jolly M-P (1998) Deformable template models: a review. Signal Processing 71:109–129

    Article  Google Scholar 

  • Jansen B, Belpaeme T (2006) A computational model of intention reading in imitation. Rob Auton Syst 54(5):394–402

    Article  Google Scholar 

  • Johnson MR, Demiris Y (2005) Perceptual perspective taking and action recognition. Int J Adv Rob Syst 2:301–308

    Google Scholar 

  • Kanno T, Nakata K, Furuta K (2003) A method for team intention inference. Int J Hum Comput Stud 58:393–413

    Article  Google Scholar 

  • Karniel A (2002) Three creatures named forward model. Neural Netw 15:305–307

    Article  PubMed  CAS  Google Scholar 

  • Kott A, McEneaney WM (eds) (2006) Adversarial reasoning: computational approaches to reading the opponent’s mind. Chapman & Hall/CRC, London

  • Liberman AM, Cooper FS, Shankweiler DP, Studdert-Kennedy M (1967) Perception of the speech code. Psychol Rev 74:431–361

    Article  PubMed  CAS  Google Scholar 

  • Meltzoff AN (1995) Understanding the intentions of others: re-enactment of intended acts by 18-month-old children. Dev Psychol 31:838–850

    Article  Google Scholar 

  • Meltzoff AN (2005) Imitation and other minds: the “Like Me–hypothesis. In: Hurley S, Chater N (eds) Perspectives on imitation: from neuroscience to social science. MIT Press, Cambridge, vol 2, pp 55–7

  • Meltzoff AN (2007a) ‘Like me– a foundation for social cognition. Dev Sci 10:126–134

    Article  PubMed  Google Scholar 

  • Meltzoff AN (2007b) The ‘like me–framework for recognizing and becoming an intentional agent. Acta Psychologica 124:26–43

    Article  PubMed  Google Scholar 

  • Meltzoff AN, Brooks R (2004) Developmental changes in social cognition with an eye towards gaze following. In: Carpenter M, Tomasello M (eds) Action-based measures of infants–understanding of others–intentions and attention. Symposium conducted at the Biennial meeting of the International Conference on Infant Studies, Chicago

  • Miall RC, Wolpert DM (1996) Forward models for physiological motor control. Neural Netw 9:1265–1279

    Article  PubMed  Google Scholar 

  • Moeslund TB, Granum E (2000) A survey of computer vision-based human motion capture. Comput Vis Image Underst 81(3):231–268

    Article  Google Scholar 

  • Moeslund TB, Hilton A, Kruger V (2006) A survey of advances in vision-based human motion capture and analysis. Comput Vis Image Underst 104:90–126

    Article  Google Scholar 

  • Narendra KS, Balakrishnan J (1997) Adaptive control using multiple models. IEEE Trans Autom Control 42(2):171–187

    Article  Google Scholar 

  • Pezzulo G, Calvi G (2006) A schema based model of the praying mantis. From animals to animats. In: Proceedings of the 9th international conference on simulation of adaptive behaviour. Springer LNAI, vol 4095, pp 211–23

  • Roweis S, Ghahramani Z (1999) A unifying review of linear Gaussian models. Neural Comput 11(2):305–345

    Article  PubMed  CAS  Google Scholar 

  • Schaal S (1999) Is Imitation learning the route to humanoid robots?. Trends Cogn Sci 3:233–242

    Article  PubMed  Google Scholar 

  • Schaal S, Ijspeert A, Billard A (2003) Computational approaches to motor learning by imitation. Philos Trans R Soc Lond B Biol Sci 358:537–547

    Article  PubMed  Google Scholar 

  • Scott SK, Johnsrude IS (2003) The neuroanatomical and functional organisation of speech perception. Trends Neurosci 26(2):100–107

    Article  PubMed  CAS  Google Scholar 

  • Sonenberg L, Tidhar G (1999) Observations on team-oriented mental state recognition. In: Proceedings of the IJCAI-1999 workshop on team modelling and plan recognition

  • Sukthankar G, Sycara K (2006) Simultaneous team assignment and behavior recognition from spatio-temporal agent traces. In: Proceedings of 21st national conference on artificial intelligence (AAAI-06)

  • Tambe M (1996) Tracking dynamic team activity. In: Proceedings of the national conference on artificial intelligence (AAAI)

  • Tani J, Nolfi S (1999) Learning to perceive the world as articulated: an approach for hierarchical learning in sensory motor systems. Neural Netw 12:1131–1141

    Article  PubMed  Google Scholar 

  • Tomasello M, Carpenter M, Call K, Behne T, Moll H (2005) Understanding and sharing intentions: the origins of cultural cognition. Behav Brain Sci 28:675–735

    PubMed  Google Scholar 

  • Trafton J, Cassimatis N, Bugajska M, Brock D, Mintz F, Schultz A (2005) Enabling effective human–robot interaction using perspective taking in robots. IEEE Trans Syst Man Cybern A Syst Hum 35(4):460–470

    Article  Google Scholar 

  • Wohlschlager A, Gattis M, Bekkering H (2003) Action generation and action perception in imitation: an instance of the ideomotor principle. Philos Trans R Soc Lond B Biol Sci 358:501–515

    Article  PubMed  Google Scholar 

  • Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11:1317–1329

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Doya K, Kawato M (2003) A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond B Biol Sci 358:593–602

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Simon Butler, Bálint Takács, Ant Dearden and Tom Carlson, as well as the anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiannis Demiris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demiris, Y. Prediction of intent in robotics and multi-agent systems. Cogn Process 8, 151–158 (2007). https://doi.org/10.1007/s10339-007-0168-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-007-0168-9

Keywords

Navigation