Skip to main content
Log in

Magnetic Kirigami by Laser Cutting

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Magnetic kirigami with tunable configurations under magnetic actuation is of significant interest in various emerging fields. However, there remains a grand challenge to develop magnetic kirigami with a facile fabrication strategy, programmable magnetization, and functionality. In this work, we present a novel magnetic kirigami that is readily fabricated by the laser cutting technique. The magnetic kirigami consists of an array of magnetic microplates, each with a programmed magnetization. By applying an actuation magnetic field, each microplate can rotate and even flip, allowing for predesigned kirigami configurations. By further coating the surface of the microplate array, the magnetic kirigami can be programmed with functionality. We demonstrate a potential application of information encryption by engineering magnetic kirigami into a magneto-responsive QR code. Providing a simple fabrication strategy, our work paves the way for other applications of magnetic kirigami.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Data and materials are provided in the main text and supplementary information. Further information is available from the corresponding authors upon reasonable request.

References

  1. Cheng YC, Lu HC, Lee X, Zeng H, Priimagi A. Kirigami-based light-induced shape-morphing and locomotion. Adv Mater. 2020;32(7): e1906233.

    Article  Google Scholar 

  2. Shyu TC, Damasceno PF, Dodd PM, Lamoureux A, Xu L, Shlian M, Shtein M, Glotzer SC, Kotov NA. A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat Mater. 2015;14(8):785–9.

    Article  Google Scholar 

  3. Rafsanjani A, Zhang Y, Liu B, Rubinstein SM, Bertoldi K. Kirigami skins make a simple soft actuator crawl. Sci Robot. 2018;3(15):eaar7555.

    Article  Google Scholar 

  4. Song Z, Wang X, Lv C, An Y, Liang M, Ma T, He D, Zheng YJ, Huang SQ, Yu H, Jiang H. Kirigami-based stretchable lithium-ion batteries. Sci Rep. 2015;5:10988.

    Article  Google Scholar 

  5. Li H, Wang W, Yang Y, Wang Y, Li P, Huang J, Li J, Lu Y, Li Z, Wang Z, Fan B, Fang J, Song W. Kirigami-based highly stretchable thin film solar cells that are mechanically stable for more than 1000 cycles. ACS Nano. 2020;14(2):1560–8.

    Article  Google Scholar 

  6. Xu L, Wang X, Kim Y, Shyu TC, Lyu J, Kotov NA. Kirigami nanocomposites as wide-angle diffraction gratings. ACS Nano. 2016;10(6):6156–62.

    Article  Google Scholar 

  7. Blees MK, Barnard AW, Rose PA, Roberts SP, McGill KL, Huang PY, Ruyack AR, Kevek JW, Kobrin B, Muller DA, McEuen PL. Graphene kirigami. Nature. 2015;524(7564):204–7.

    Article  Google Scholar 

  8. Jiralerspong T, Bae G, Lee JH, Kim SK. Wireless control of two- and three-dimensional actuations of kirigami patterns composed of magnetic-particles-polymer composites. ACS Nano. 2020;14:17589–96.

    Article  Google Scholar 

  9. Sun Q, Wang D, Li Y, Zhang J, Ye S, Cui J, Chen L, Wang Z, Butt HJ, Vollmer D, Deng X. Surface charge printing for programmed droplet transport. Nat Mater. 2019;18(9):936–41.

    Article  Google Scholar 

  10. Oh I, Keplinger C, Cui JX, Chen JH, Whitesides GM, Aizenberg J, Hu YH. Dynamically actuated liquid-infused poroelastic film with precise control over droplet dynamics. Adv Func Mater. 2018;28(39):1802632.

    Article  Google Scholar 

  11. Chen C, Huang Z, Jiao Y, Shi LA, Zhang Y, Li J, Li C, Lv X, Wu S, Hu Y, Zhu W, Wu D, Chu J, Jiang L. In situ reversible control between sliding and pinning for diverse liquids under ultra-low voltage. ACS Nano. 2019;13(5):5742–52.

    Article  Google Scholar 

  12. Xu B, Zhu C, Qin L, Wei J, Yu Y. Light-directed liquid manipulation in flexible bilayer microtubes. Small. 2019;15(24): e1901847.

    Article  Google Scholar 

  13. Sun L, Bian F, Wang Y, Wang Y, Zhang X, Zhao Y. Bioinspired programmable wettability arrays for droplets manipulation. Proc Natl Acad Sci U S A. 2020;117(9):4527–32.

    Article  Google Scholar 

  14. Wang J, Gao W, Zhang H, Zou M, Chen Y, Zhao Y. Programmable wettability on photocontrolled graphene film. Sci Adv. 2018;4(9):eaat7392.

    Article  Google Scholar 

  15. Wang W, Timonen JVI, Carlson A, Drotlef DM, Zhang CT, Kolle S, Grinthal A, Wong TS, Hatton B, Kang SH, Kennedy S, Chi J, Blough RT, Sitti M, Mahadevan L, Aizenberg J. Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography. Nature. 2018;559(7712):77–82.

    Article  Google Scholar 

  16. Guo J, Wang D, Sun Q, Li L, Zhao H, Wang D, Cui J, Chen L, Deng X. Omni-liquid droplet manipulation platform. Adv Mater Interfaces. 2019;6(16): e1900653.

    Article  Google Scholar 

  17. Miao L, Song Y, Ren Z, Xu C, Wan J, Wang H, Guo H, Xiang Z, Han M, Zhang H. 3D temporary-magnetized soft robotic structures for enhanced energy harvesting. Adv Mater. 2021;33(40): e2102691.

    Article  Google Scholar 

  18. Wang J, Yi S, Yang Z, Chen Y, Jiang L, Wong CP. Laser direct structuring of bioinspired spine with backward microbarbs and hierarchical microchannels for ultrafast water transport and efficient fog harvesting. ACS Appl Mater Interfaces. 2020;12(18):21080–7.

    Article  Google Scholar 

  19. Wang M, Liu Q, Zhang H, Wang C, Wang L, Xiang B, Fan Y, Guo CF, Ruan S. Laser direct writing of tree-shaped hierarchical cones on a superhydrophobic film for high-efficiency water collection. ACS Appl Mater Interfaces. 2017;9(34):29248–54.

    Article  Google Scholar 

  20. Yi S, Wang L, Chen Z, Wang J, Song X, Liu P, Zhang Y, Luo Q, Peng L, Wu Z, Guo CF, Jiang L. High-throughput fabrication of soft magneto-origami machines. Nat Commun. 2022;13(1):4177.

    Article  Google Scholar 

  21. Zhu H, Wang Y, Ge Y, Zhao Y, Jiang C. Kirigami-inspired programmable soft magnetoresponsive actuators with versatile morphing modes. Adv Sci. 2022;9(32): e2203711.

    Article  Google Scholar 

  22. Wang J, Zhu Z, Liu P, Yi S, Peng L, Yang Z, Tian X, Jiang L. Magneto-responsive shutter for on-demand droplet manipulation. Adv Sci. 2021;8(23): e2103182.

    Article  Google Scholar 

  23. Jiang S, Hu Y, Wu H, Zhang Y, Zhang Y, Wang Y, Zhang Y, Zhu W, Li J, Wu D, Chu J. Multifunctional janus microplates arrays actuated by magnetic fields for water/light switches and bio-inspired assimilatory coloration. Adv Mater. 2019;31(15): e1807507.

    Article  Google Scholar 

  24. Chen Z, Lin Y, Zheng G, Yang Y, Zhang Y, Zheng S, Li J, Li J, Ren L, Jiang L. Programmable transformation and controllable locomotion of magnetoactive soft materials with 3D-patterned magnetization. ACS Appl Mater Interfaces. 2020;12(52):58179–90.

    Article  Google Scholar 

  25. Wang L, Kim Y, Guo CF, Zhao X. Hard-magnetic elastica. J Mech Phys Solids. 2020;142: e104045.

    Article  MathSciNet  Google Scholar 

  26. Zhao R, Kim Y, Chester SA, Sharma P, Zhao X. Mechanics of hard-magnetic soft materials. J Mech Phys Solids. 2019;124:244–63.

    Article  MathSciNet  Google Scholar 

Download references

Funding

National Natural Science Foundation of China (Project Nos. 51975597, 21872176, 22072185, and 12272369), Natural Science Foundation of Guangdong Province (Project Nos. 2019A1515011011 and 2022A1515011065), Special Support Plan for High Level Talents in Guangdong Province (Project No. 2017TQ04X674), Key Research and Development Plan of Guangdong Province (Project No. 2018B0909060), Pearl River Talents Program of Guangdong Province (Project No. 2017GC010671), and Organized scientific research project of Guangdong Normal University of Technology (Project No.22GPNUZDJS21).

Author information

Authors and Affiliations

Authors

Contributions

JW contributed to conceptualization, investigation, methodology, experiments, visualization, writing—original draft. YZ and LX contributed to writing, revising—revised draft. LJ contributed to conceptualization, visualization, writing—original draft. LW contributed to conceptualization, methodology, writing—review. LJ and LW supervised the work.

Corresponding authors

Correspondence to Lelun Jiang or Liu Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics Approval

The paper presented obeys the ethical responsibilities required by Acta Mechanica Solida Sinica.

Consent for Publication

The authors of this paper give consent for its publication in Acta Mechanica Solida Sinica.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhou, Y., Xu, L. et al. Magnetic Kirigami by Laser Cutting. Acta Mech. Solida Sin. 36, 594–601 (2023). https://doi.org/10.1007/s10338-023-00394-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-023-00394-z

Keywords

Navigation