Skip to main content
Log in

Topology Optimization of Transient Thermo-elastic Structure Considering Regional Temperature Control

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

In this paper, a topology optimization model for transient thermo-elastic coupling problems is proposed. Based on the method of solid isotropic material with penalization, the coupled equations of transient thermomechanical field are established. In this model, the objective is to minimize the global structural compliance with volume and maximum temperature constraints during the working time. To efficiently restrict the maximum temperature of the transient thermo-elastic structure in time and spatial dimensions, the regional temperature control scheme is constructed using the aggregation function. The adjoint variable method is adopted to derive the sensitivity of objective function and constraints, and the design variables are updated through the method of moving asymptotes to obtain clear optimal topologies. The effects of the duration and magnitude of the thermal and structural loads on the optimization results are discussed through several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in this published article.

References

  1. Yan JY, Xiang R, Kamensky D, Tolley MT, Hwang JT. Topology optimization with automated derivative computation for multidisciplinary design problems. Struct Multidiscip Optim. 2022;65:151. https://doi.org/10.1007/s00158-022-03168-2.

    Article  MathSciNet  Google Scholar 

  2. Dai YJ, Ren XJ, Wang YG, Xiao Q, Tao WQ. Effect of thermal expansion on thermal contact resistance prediction based on the dual-iterative thermal–mechanical coupling method. Int J Heat Mass Transf. 2021;173:121243. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121243.

    Article  Google Scholar 

  3. Nguyen TT, Waldmann D, Bui TQ. Computational chemo-thermo-mechanical coupling phase-field model for complex fracture induced by early-age shrinkage and hydration heat in cement-based materials. Comput Methods Appl Mech Eng. 2019;348:1–21. https://doi.org/10.1016/j.cma.2019.01.012.

    Article  MathSciNet  MATH  Google Scholar 

  4. Guo C, Liu HL, Guo Q, Shao XD, Zhu ML. Investigations on a novel cold plate achieved by topology optimization forlithium-ion batteries. Energy. 2022;261:125097. https://doi.org/10.1016/j.energy.2022.125097.

    Article  Google Scholar 

  5. Bendsøe MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng. 1988;71(2):197–224. https://doi.org/10.1016/0045-7825(88)90086-2.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bendsøe MP. Optimal shape design as a material distribution problem. Struct Multidiscipl Optim. 1989;1(4):193–202.

    Article  MathSciNet  Google Scholar 

  7. Zhou M, Rozvany GIN. The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng. 1991;89(1–3):309–36. https://doi.org/10.1016/0045-7825(91)90046-9.

    Article  Google Scholar 

  8. Xie YM, Steven GP. A simple evolutionary procedure for structural optimization. Comput Struct. 1993;49(5):885–96. https://doi.org/10.1016/0045-7949(93)90035-C.

    Article  Google Scholar 

  9. Huang X, Xie YM. Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput Mech. 2009;43(3):393–401. https://doi.org/10.1007/s00466-008-0312-0.

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang MY, Wang X, Guo D. A level set method for structural topology optimization. Comput Methods Appl Mech Eng. 2003;192(1):227–46. https://doi.org/10.1016/S0045-7825(02)00559-5.

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo X, Zhang WS, Zhong WL. Doing topology optimization explicitly and geometrically—A new moving morphable components based framework. J Appl Mech. 2014;81:081009. https://doi.org/10.1115/1.4027609.

    Article  Google Scholar 

  12. Zhang WS, Chen JS, Zhu XF, Zhou JH, Xue DC, Lei X, Guo X. Explicit three dimensional topology optimization via moving morphable void (MMV) approach. Comput Method Appl Mech Eng. 2017;322:590–614. https://doi.org/10.1016/j.cma.2017.05.002.

    Article  MathSciNet  MATH  Google Scholar 

  13. Rodrigues H, Fernandes P. A material based model for topology optimization of thermoelastic structures. Int J Numer Methods Eng. 1995;38(12):1951–65. https://doi.org/10.1002/nme.1620381202.

    Article  MathSciNet  MATH  Google Scholar 

  14. Sigmund O, Torquato S. Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids. 1997;45:1037–67. https://doi.org/10.1016/S0022-5096(96)00114-7.

    Article  MathSciNet  Google Scholar 

  15. Yan J, Guo X, Cheng G. Multi-scale concurrent material and structural design under mechanical and thermal loads. Comput Mech. 2016;57:437–46. https://doi.org/10.1007/s00466-015-1255-x.

    Article  MathSciNet  MATH  Google Scholar 

  16. Yuan BS, Ye HL, Li JC, Wei N, Sui YK. Topology optimization of geometrically nonlinear structures under thermal-mechanical coupling. Acta Mech Sin. 2022. https://doi.org/10.1007/s10338-022-00342-3.

    Article  Google Scholar 

  17. Gao T, Zhang WH. Topology optimization involving thermo-elastic stress loads. Struct Multidiscip Optim. 2010;42:725–38. https://doi.org/10.1007/s00158-010-0527-5.

    Article  MathSciNet  MATH  Google Scholar 

  18. Deng SG, Suresh K. Stress constrained thermo-elastic topology optimization with varying temperature fields via augmented topological sensitivity based level-set. Struct Multidiscip Optim. 2017;56:1413–27. https://doi.org/10.1007/s00158-017-1732-2.

    Article  MathSciNet  Google Scholar 

  19. Zhu XF, Zhao C, Wang X, Zhou Y, Hu P, Ma ZD. Temperature-constrained topology optimiz-ation of thermo-mechanical coupled problems. Eng Optimiz. 2019;51:1687–709. https://doi.org/10.1080/0305215X.2018.1554065.

    Article  MATH  Google Scholar 

  20. Meng QX, Xu B, Wang C, Zhao L. Thermo-elastic topology optimization with stress and tem-perature constraints. Int J Numer Methods Eng. 2021;122:2919–44. https://doi.org/10.1002/nme.6646.

    Article  Google Scholar 

  21. Turteltaub S. Optimal material properties for transient problems. Struct Multidiscip Optim. 2001;22:157–66. https://doi.org/10.1007/s001580100133.

    Article  Google Scholar 

  22. Zhuang CG, Xiong ZH. A global heat compliance measure based topology optimization for the transient heat conduction problem. Num Heat Trans Part B Fund. 2014;65:445–71. https://doi.org/10.1080/10407790.2013.873309.

    Article  Google Scholar 

  23. Zhuang CG, Xiong ZH. Temperature-constrained topology optimization of transient heat conduction problems. Num Heat Trans Part B Fund. 2015;68:366–85. https://doi.org/10.1080/10407790.2015.1033306.

    Article  Google Scholar 

  24. Wu SH, Zhang YC, Liu ST. Topology optimization for minimizing the maximum temperature of transient heat conduction structure. Struct Multidiscip Optim. 2019;64:1385–99. https://doi.org/10.1007/s00158-019-02196-9.

    Article  MathSciNet  Google Scholar 

  25. Zhao QH, Zhang HX, Wang FJ, Zhang TZ, Li XQ. Topology optimization of non-Fourier heat conduction problems considering global thermal dissipation energy minimization. Struct Multidiscip Optim. 2021;64:1385–99. https://doi.org/10.1007/s00158-021-02924-0.

    Article  MathSciNet  Google Scholar 

  26. Li XQ, Zhao QH, Long K, Zhang HX. Multi-material topology optimization of transient heat conduction structure with functional gradient constraint. Int Commun Heat Mass Transf. 2022;131:105845.

    Article  Google Scholar 

  27. Hooijkamp EC, van Keulen F. Topology optimization for linear thermo-mechanical transient problems: modal reduction and adjoint sensitivities. Int J Numer Methods Eng. 2017;113(8):1230–57. https://doi.org/10.1002/nme.5635.

    Article  MathSciNet  Google Scholar 

  28. Ogawa S, Yamada T. Topology optimization for transient thermomechanical coupling problems. Appl Math Model. 2022;109:536–54. https://doi.org/10.1016/j.apm.2022.05.017.

    Article  MathSciNet  MATH  Google Scholar 

  29. Kennedy GJ, Hicken JE. Improved constraint-aggregation methods. Comput Methods Appl Mech Eng. 2015;289:332–54. https://doi.org/10.1016/j.cma.2015.02.017.

    Article  MathSciNet  MATH  Google Scholar 

  30. Svanberg K. The method of moving asymptotes—A new method for structural optimization. Int J Numer Methods Eng. 1987;24:359–73. https://doi.org/10.1002/nme.1620240207.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are thankful for Professor Krister Svanberg who made the MMA program freely available for research purposes and the anonymous reviewers’ helpful and constructive comments.

Funding

National Natural Science Foundation of China, 52175236.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghai Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Consent for publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhao, Q., Zhang, L. et al. Topology Optimization of Transient Thermo-elastic Structure Considering Regional Temperature Control. Acta Mech. Solida Sin. 36, 262–273 (2023). https://doi.org/10.1007/s10338-022-00377-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-022-00377-6

Keywords

Navigation