Skip to main content
Log in

Ion-Induced Friction Reduction in Water Nanoflow over Graphene

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Our extensive nonequilibrium and equilibrium molecular dynamics simulations reveal the ion-induced interfacial friction reduction of NaCl-containing water nanoflow over graphene. Even under a normal pressure, with the increase in ion concentration, the friction coefficients of water nanoflow at the water/graphene interfaces decrease, and the slip lengths and shear viscosities of water nanoflow increase. The interfacial friction reduction with the increase in ion concentration is mainly attributed to the decrease in interfacial hydrated ions and the weaker binding of water molecules with graphene at a higher ion concentration. The presence of ions changes the hydrogen bond networks and structural configuration of water molecules close to the underlying graphene sheets and plays a key role in reducing the interfacial friction between water nanoflow and graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed used to support the findings of this study are included within the article and supplementary material.

References

  1. Bocquet L, Tabeling P. Physics and technological aspects of nanofluidics. Lab Chip. 2014;14:3143–58. https://doi.org/10.1039/c4lc00325j.

    Article  Google Scholar 

  2. van der Heyden FHJ, Bonthuis DJ, Stein D, Meyer C, Dekker C. Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett. 2006;6:2232–7. https://doi.org/10.1021/nl061524l.

    Article  Google Scholar 

  3. Pennathur S, Eijkel JCT, van den Berg A. Energy conversion in microsystems: is there a role for micro/nanofluidics? Lab Chip. 2007;7:1234–7. https://doi.org/10.1039/b712893m.

    Article  Google Scholar 

  4. Chen HM, Xu Y, Bai L, Jiang Y, Zhang JS, Zhao C, et al. Crumpled graphene triboelectric nanogenerators: smaller devices with higher output performance. Adv Mater Technol. 2017;2:1700044. https://doi.org/10.1002/admt.201700044.

    Article  Google Scholar 

  5. Chu H, Jang H, Lee Y, Chae Y, Ahn JH. Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics. Nano Energy. 2016;27:298–305. https://doi.org/10.1016/j.nanoen.2016.07.009.

    Article  Google Scholar 

  6. Lee JH, Lee KY, Kumar B, Tien NT, Lee NE, Kim SW. Highly sensitive stretchable transparent piezoelectric nanogenerators. Energy Environ Sci. 2013;6:169–75. https://doi.org/10.1039/c2ee23530g.

    Article  Google Scholar 

  7. Abolhasani MM, Shirvanimoghaddam K, Naebe M. PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators. Compos Sci Technol. 2017;138:49–56. https://doi.org/10.1016/j.compscitech.2016.11.017.

    Article  Google Scholar 

  8. Amollo TA, Mola GT, Kirui MSK, Nyamori VO. Graphene for thermoelectric applications: prospects and challenges. Crit Rev Solid State Mater Sci. 2018;43:133–57. https://doi.org/10.1080/10408436.2017.1300871.

    Article  Google Scholar 

  9. Hossain MS, Al-Dirini F, Hossain FM, Skafidas E. High performance graphene nano-ribbon thermoelectric devices by incorporation and dimensional tuning of nanopores. Sci Rep. 2015;5:11297. https://doi.org/10.1038/srep11297.

    Article  Google Scholar 

  10. Chen CY, Hone J. Graphene nanoelectromechanical systems. Proc IEEE. 2013;101:1766–79. https://doi.org/10.1109/JPROC.2013.2253291.

    Article  Google Scholar 

  11. Qian ZY, Liu FZ, Hui Y, Kar S, Rinaldi M. Graphene as a massless electrode for ultrahigh-frequency piezoelectric nanoelectromechanical systems. Nano Lett. 2015;15:4599–604. https://doi.org/10.1021/acs.nanolett.5b01208.

    Article  Google Scholar 

  12. Yin J, Zhang ZH, Li XM, Zhou JX, Guo WL. Harvesting energy from water flow over graphene? Nano Lett. 2012;12:1736–41. https://doi.org/10.1021/nl300636g.

    Article  Google Scholar 

  13. Yin J, Zhang ZH, Li XM, Yu J, Zhou JX, Chen YQ, et al. Waving potential in grapheme. Nat Commun. 2014;5:3582. https://doi.org/10.1038/ncomms4582.

    Article  Google Scholar 

  14. Yin J, Li XM, Yu J, Zhang ZH, Zhou JX, Guo WL. Generating electricity by moving a droplet of ionic liquid along grapheme. Nat Nanotechnol. 2014;9:378–83. https://doi.org/10.1038/NNANO.2014.56.

    Article  Google Scholar 

  15. Kwak SS, Lin SS, Lee JH, Ryu H, Kim TY, Zhong HK, et al. Triboelectrification-induced large electric power generation from a single moving droplet on graphene/polytetrafluoroethylene. ACS Nano. 2016;10:7297–302. https://doi.org/10.1021/acsnano.6b03032.

    Article  Google Scholar 

  16. Lee SH, Kang YB, Jung W, Jung Y, Kim S, Noh H. Flow-induced voltage generation over monolayer graphene in the presence of herringbone grooves. Nanoscale Res Lett. 2013;8:487. https://doi.org/10.1186/1556-276X-8-487.

    Article  Google Scholar 

  17. Zhong HK, Wu ZQ, Li XQ, Xu WL, Xu S, Zhang SJ, et al. Graphene based two dimensional hybrid nanogenerator for concurrently harvesting energy from sunlight and water flow. Carbon. 2016;105:199–204. https://doi.org/10.1016/j.carbon.2016.04.030.

    Article  Google Scholar 

  18. Zhong HK, Xia J, Wang FC, Chen HS, Wu HA, Lin SS. Graphene-piezoelectric material heterostructure for harvesting energy from water flow. Adv Funct Mater. 2017;27:1604226. https://doi.org/10.1002/adfm.201604226.

    Article  Google Scholar 

  19. Xiong W, Liu JZ, Ma M, Xu ZP, Sheridan J, Zheng QS. Strain engineering water transport in graphene nanochannels. Phys Rev E. 2011;84: 056329. https://doi.org/10.1103/PhysRevE.84.056329.

    Article  Google Scholar 

  20. Wagemann E, Misra S, Das S, Mitra SK. Quantifying water friction in misaligned graphene channels under angstrom confinements. ACS Appl Mater Interfaces. 2020;12:35757–64. https://doi.org/10.1021/acsami.0c10445.

    Article  Google Scholar 

  21. Herrero C, Tocci G, Merabia S, Joly L. Fast increase of nanofluidic slip in supercooled water: the key role of dynamics. Nanoscale. 2020;12:20396–403. https://doi.org/10.1039/d0nr06399a.

    Article  Google Scholar 

  22. Li JCA, Zhu YB, Xia J, Fan JC, Wu HA, Wang FC. Anomalously low friction of confined monolayer water with a quadrilateral structure. J Chem Phys. 2021;154: 224508. https://doi.org/10.1063/5.0053361.

    Article  Google Scholar 

  23. Greenwood G, Kim JM, Zheng QL, Nahid SM, Nam S, Espinosa-Marzal RM. Effects of layering and supporting substrate on liquid slip at the single-layer graphene interface. ACS Nano. 2021;15:10095–106. https://doi.org/10.1021/acsnano.1c01884.

    Article  Google Scholar 

  24. Xie YB, Fu L, Niehaus T, Joly L. Liquid–solid slip on charged walls: the dramatic impact of charge distribution. Phys Rev Lett. 2020;125: 014501. https://doi.org/10.1103/PhysRevLett.125.014501.

    Article  Google Scholar 

  25. Raviv U, Giasson S, Kampf N, Gohy JF, Jerome R, Klein J. Lubrication by charged polymers. Nature. 2003;425:163–5. https://doi.org/10.1038/nature01970.

    Article  Google Scholar 

  26. Wang HD, Liu YH, Liu WR, Liu YM, Wang KP, Li JJ, et al. Superlubricity of polyalkylene glycol aqueous solutions enabled by ultrathin layered double hydroxide nanosheets. ACS Appl Mater Interfaces. 2019;11:20249–56. https://doi.org/10.1021/acsami.9b03014.

    Article  Google Scholar 

  27. Ma Q, He T, Khan AM, Wang Q, Chung YW. Achieving macroscale liquid superlubricity using glycerol aqueous solutions. Tribol Int. 2021;160: 107006. https://doi.org/10.1016/j.triboint.2021.107006.

    Article  Google Scholar 

  28. Ge XY, Li JJ, Zhang CH, Liu YH, Luo JB. Superlubricity and antiwear properties of in situ-formed ionic liquids at ceramic interfaces induced by tribochemical reactions. ACS Appl Mater Interfaces. 2019;11:6568–74. https://doi.org/10.1021/acsami.8b21059.

    Article  Google Scholar 

  29. Gao TY, Li JJ, Yi S, Luo JB. Potential-dependent friction on a graphitic surface in ionic solution. J Phys Chem C. 2020;124:23745–51. https://doi.org/10.1021/acs.jpcc.0c07358.

    Article  Google Scholar 

  30. Rosenhek-Goldian I, Kampf N, Klein J. Trapped aqueous films lubricate highly hydrophobic surfaces. ACS Nano. 2018;12:10075–83. https://doi.org/10.1021/acsnano.8b04735.

    Article  Google Scholar 

  31. Diao YJ, Greenwood G, Wang MC, Nam S, Espinosa-Marzal RM. Slippery and sticky graphene in water. ACS Nano. 2019;13:2072–82. https://doi.org/10.1021/acsnano.8b08666.

    Article  Google Scholar 

  32. Han TY, Zhang CH, Li JJ, Yuan SH, Chen XC, Zhang JY, et al. Origins of superlubricity promoted by hydrated multivalent ions. J Phys Chem Lett. 2020;11:184–90. https://doi.org/10.1021/acs.jpclett.9b03098.

    Article  Google Scholar 

  33. Majumder M, Chopra N, Andrews R, Hinds BJ. Nanoscale hydrodynamics-enhanced flow in carbon nanotubes. Nature. 2005;438:44. https://doi.org/10.1038/43844a.

    Article  Google Scholar 

  34. Whitby M, Quirke N. Fluid flow in carbon nanotubes and nanopipes. Nat Nanotechnol. 2007;2:87–94. https://doi.org/10.1038/nnano.2006.175.

    Article  Google Scholar 

  35. Falk K, Sedlmeier F, Joly L, Netz RR, Bocquet L. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 2010;10:4067–73. https://doi.org/10.1021/nl1021046.

    Article  Google Scholar 

  36. Joshi RK, Carbone P, Wang FC, Kravets VG, Su Y, Grigorieva IV, et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science. 2014;343:752–4. https://doi.org/10.1126/science.1245711.

    Article  Google Scholar 

  37. Radha B, Esfandiar A, Wang FC, Rooney AP, Gopinadhan K, Keerthi A, et al. Molecular transport through capillaries made with atomic-scale precision. Nature. 2016;538:222–5. https://doi.org/10.1038/nature19363.

    Article  Google Scholar 

  38. Abascal JLF, Vega C. A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys. 2005;123: 234505. https://doi.org/10.1063/1.2121687.

    Article  Google Scholar 

  39. Kann ZR, Skinner JL. A scaled-ionic-charge simulation model that reproduces enhanced and suppressed water diffusion in aqueous salt solutions. J Chem Phys. 2014;141: 104507. https://doi.org/10.1063/1.4894500.

    Article  Google Scholar 

  40. Perez-Hernandez G, Schmidt B. Anisotropy of the water–carbon interaction: molecular simulations of water in low-diameter carbon nanotubes. Phys Chem Chem Phys. 2013;15:4995–5006. https://doi.org/10.1039/c3cp44278k.

    Article  Google Scholar 

  41. Hockney RW, Eastwood JW. Computer simulation using particles. Cambridge: CRC Press; 1988. p. 267–304.

    MATH  Google Scholar 

  42. Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys. 1977;23:327–41. https://doi.org/10.1016/0021-9991(77)90098-5.

    Article  Google Scholar 

  43. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19. https://doi.org/10.1006/jcph.1995.1039.

    Article  MATH  Google Scholar 

  44. Nose S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81:511–9. https://doi.org/10.1063/1.447334.

    Article  Google Scholar 

  45. Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31:1695–7. https://doi.org/10.1103/PhysRevA.31.1695.

    Article  Google Scholar 

  46. Frank MW. Fluid mechanics. New York: McGraw-Hill; 2011. p. 268.

    Google Scholar 

  47. Bocquet L, Barrat JL. Flow boundary conditions from nano- to micro-scales. Soft Matter. 2007;3:685–93. https://doi.org/10.1039/b616490k.

    Article  Google Scholar 

  48. Haynes WM. CRC handbook of chemistry and physics. Boca Raton: CRC Press; 2014.

    Book  Google Scholar 

  49. Guevara-Carrion G, Vrabec J, Hasse H. Prediction of self-diffusion coefficient and shear viscosity of water and its binary mixtures with methanol and ethanol by molecular simulation. J Chem Phys. 2011;134: 074508. https://doi.org/10.1063/1.3515262.

    Article  Google Scholar 

  50. Rajan AG, Strano MS, Blankschtein D. Liquids with lower wettability can exhibit higher friction on hexagonal boron nitride: the intriguing role of solid-liquid electrostatic interactions. Nano Lett. 2019;19:1539–51. https://doi.org/10.1021/acs.nanolett.8b04335.

    Article  Google Scholar 

  51. Volkov AG, Paula S, Deamer DW. Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. Bioelectrochem Bioenergy. 1997;42:153–60. https://doi.org/10.1016/S0302-4598(96)05097-0.

    Article  Google Scholar 

  52. Luzar A, Chandler D. Effect of environment on hydrogen bond dynamics in liquid water. Phys Rev Lett. 1996;76:928–31. https://doi.org/10.1103/PhysRevLett.76.928.

    Article  Google Scholar 

  53. Luzar A, Chandler D. Hydrogen-bond kinetics in liquid water. Nature. 1996;379:55–7. https://doi.org/10.1038/379055a0.

    Article  Google Scholar 

  54. Randall M, Failey CF. The activity coefficient of non-electrolytes in aqueous salt solutions from solubility measurements. The salting-out order of the ions. Chem Rev. 1927;4:285–90. https://doi.org/10.1021/cr60015a004.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11972186, 11890674, 51921003), the Western Light Project of CAS (xbzg-zdsys-202118), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

YW: Writing—original draft, performed molecular dynamics simulations, formal analysis, contributed to the discussion of the results. YG: Supervision, supervised the whole research, Writing—original draft, formal analysis, contributed to the discussion of the results. WG: Supervised the research, contributed to the discussion of the results.

Corresponding author

Correspondence to Yufeng Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Guo, Y. & Guo, W. Ion-Induced Friction Reduction in Water Nanoflow over Graphene. Acta Mech. Solida Sin. 36, 214–220 (2023). https://doi.org/10.1007/s10338-022-00373-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-022-00373-w

Keywords

Navigation