Skip to main content

Advertisement

Log in

Innovative Thin-Walled Structure with Transverse Negative Poisson's Ratio for High-Performance Crashworthiness

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

In this paper, an innovative type of thin-walled structures, the convex-concave honeycomb columns (CCHCs) with transverse negative Poisson’s ratio (NPR), is proposed for energy absorbers by replacing the cell walls of square honeycomb lattice columns with sine-shaped or zigzag-shaped walls of equal mass. Numerical simulations show that, under axial impact, contrary to the conventional square honeycomb columns of equal mass, the transverse cross section of NPR CCHC shrinks inward, making the cell walls of CCHC contact and interact sufficiently with each other and thus dissipate the impact energy much more effectively. By suitably adjusting the transverse NPR, the CCHC can have the combined advantages of effective total energy absorption, high specific energy absorption and low maximum peak crushing force. The research of this paper provides a new strategy for the design of high-performance energy absorbers widely used in the engineering fields of vehicle engineering, aerospace engineering etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Langseth M, Hopperstad OS. Static and dynamic axial crushing of square thin-walled aluminium extrusions. Int J Impact Engin. 1996;18:949–68.

    Article  Google Scholar 

  2. Mamalis AG, Manolakos DE, Ioannidis MB, Kostazos PK, Dimitriou C. Finite element simulation of the axial collapse of metallic thin-walled tubes with octagonal cross-section. Thin Wall Struct. 2003;41:891–900.

    Article  Google Scholar 

  3. Tarigopula V, Langseth M, Hopperstad OS, Clausen AH. Axial crushing of thin-walled high-strength steel sections. Int J Impact Engin. 2006;32:847–82.

    Article  Google Scholar 

  4. Zarei HR, Kroger M. Multiobjective crashworthiness optimization of circular aluminum tubes. Thin Wall Struct. 2006;44:301–8.

    Article  Google Scholar 

  5. Rossi A, Fawaz Z, Behdinan K. Numerical simulation of the axial collapse of thin-walled polygonal section tubes. Thin Wall Struct. 2005;43:1646–61.

    Article  Google Scholar 

  6. Sun G, Tian X, Fang J, Xu F, Li G, Huang X. Dynamical bending analysis and optimization design for functionally graded thickness (FGT) tube. Int J Impact Engin. 2015;78:128–37.

    Article  Google Scholar 

  7. Zhang Y, Sun G, Xu X, Li G, Li Q. Multiobjective crashworthiness optimization of hollow and conical tubes for multiple load cases. Thin Wall Struct. 2014;82:331–42.

    Article  Google Scholar 

  8. Li G, Zhang Z, Sun G, Huang X, Li Q. Comparison of functionally-graded structures under multiple loading angles. Thin Wall Struct. 2015;94:334–47.

    Article  Google Scholar 

  9. Adachi T, Tomiyama A, Araki W, Yamaji A. Energy absorption of a thin-walled cylinder with ribs subjected to axial impact. Int J Impact Engin. 2008;35:65–79.

    Article  Google Scholar 

  10. Salehghaffari S, Rais-Rohani M, Najafi A. Analysis and optimization of externally stiffened crush tubes. Thin Wall Struct. 2011;49:397–408.

    Article  Google Scholar 

  11. Han H, Taheri F, Pegg N. Quasi-static and dynamic crushing behaviors of aluminum and steel tubes with a cutout. Thin Wall Struct. 2007;45:283–300.

    Article  Google Scholar 

  12. Zhang X, Cheng G, You Z, Zhang H. Energy absorption of axially compressed thin-walled square tubes with patterns. Thin Wall Struct. 2007;45:737–46.

    Article  Google Scholar 

  13. Nagel GM, Thambiratnam DP. A numerical study on the impact response and energy absorption of tapered thin-walled tubes. Int J Mech Sci. 2004;46:201–16.

    Article  Google Scholar 

  14. Nagel GM, Thambiratnam DP. Computer simulation and energy absorption of tapered thin-walled rectangular tubes. Thin Wall Struct. 2005;43:1225–42.

    Article  Google Scholar 

  15. Nagel GM, Thambiratnam DP. Dynamic simulation and energy absorption of tapered thin-walled tubes under oblique impact loading. Int J Impact Engin. 2006;32:1595–620.

    Article  Google Scholar 

  16. Hou S, Han X, Sun G, Long S, Li W, Yang X, Li Q. Multiobjective optimization for tapered circular tubes. Thin Wall Struct. 2011;49:855–63.

    Article  Google Scholar 

  17. Baroutaji A, Morris E, Olabi AG. Quasi-static response and multi-objective crashworthiness optimization of oblong tube under lateral loading. Thin Wall Struct. 2014;82:262–77.

    Article  Google Scholar 

  18. Daneshi GH, Hosseinipour SJ. Grooves effect on crashworthiness characteristics of thin-walled tubes under axial compression. Mater Design. 2003;23:611–7.

    Article  Google Scholar 

  19. Hosseinipour SJ, Daneshi GH. Energy absorbtion and mean crushing load of thin-walled grooved tubes under axial compression. Thin Wall Struct. 2003;41:31–46.

    Article  Google Scholar 

  20. Song J, Chen Y, Lu GX. Light-weight thin-walled structures with patterned windows under axial crushing. International Int J Mech Sci. 2013;66:239–48.

    Article  Google Scholar 

  21. Song J, Chen Y, Lu G. Axial crushing of thin-walled structures with origami patterns. Thin Wall Struct. 2012;54:65–71.

    Article  Google Scholar 

  22. Ma J, You Z. Energy Absorption of Thin-Walled Square Tubes With a Prefolded Origami Pattern—Part I: Geometry and Numerical Simulation. J Appl Mech. 2014;81: 011003.

    Article  Google Scholar 

  23. Yang K, Xu S, Shen J, Zhou S, Xie YM. Energy absorption of thin-walled tubes with pre-folded origami patterns: Numerical simulation and experimental verification. Thin Wall Struct. 2016;103:33–44.

    Article  Google Scholar 

  24. Ma J, Hou D, Chen Y, You Z. Quasi-static axial crushing of thin-walled tubes with a kite-shape rigid origami pattern: Numerical simulation. Thin Wall Struct. 2016;100:38–47.

    Article  Google Scholar 

  25. Sun Y, Du C, Ding Q, Wang B, Ma S, Yu S, Ren F. Convex-concave honeycomb tube structures with tunable negative Poisson’s ratio for high crashworthiness. (In submission)

  26. Kim HS. New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency. Thin Wall Struct. 2002;40:311–27.

    Article  Google Scholar 

  27. Wu S, Zheng G, Sun G, Liu Q, Li G, Li Q. On design of multi-cell thin-wall structures for crashworthiness. Int J Impact Engin. 2016;88:102–17.

    Article  Google Scholar 

  28. Liu S, Tong Z, Tang Z, Liu Y, Zhang Z. Bionic design modification of non-convex multi-corner thin-walled columns for improving energy absorption through adding bulkheads. Thin Wall Struct. 2015;88:70–81.

    Article  Google Scholar 

  29. Zhang X, Cheng G, Zhang H. Theoretical prediction and numerical simulation of multi-cell square thin-walled structures. Thin Wall Struct. 2006;44:1185–91.

    Article  Google Scholar 

  30. Tran TN, Hou S, Han X, Nguyen NT, Chau MQ. Theoretical prediction and crashworthiness optimization of multi-cell square tubes under oblique impact loading. Int J Mech Sci. 2014;89:177–93.

    Article  Google Scholar 

  31. Sun G, Li G, Stone M, Li Q. A two-stage multi-fidelity optimization procedure for honeycomb-type cellular materials. Comput Mater Sci. 2010;49:500–11.

    Article  Google Scholar 

  32. Hong W, Fan H, Xia Z, Jin F, Zhou Q, Fang D. Axial crushing behaviors of multi-cell tubes with triangular lattices. Int J Impact Engin. 2014;63:106–17.

    Article  Google Scholar 

  33. Tran TN, Hou S, Han X, Tan W, Nguyen NT. Theoretical prediction and crashworthiness optimization of multi-cell triangular tubes. Thin Wall Struct. 2014;82:183–95.

    Article  Google Scholar 

  34. Zhang X, Zhang H. Energy absorption of multi-cell stub columns under axial compression. Thin Wall Struct. 2013;68:156–63.

    Article  Google Scholar 

  35. Zhang X, Zhang H. Axial crushing of circular multi-cell columns. Int J Impact Engng. 2014;65:110–25.

    Article  Google Scholar 

  36. Zhang X, Zhang H. Theoretical and numerical investigation on the crush resistance of rhombic and kagome honeycombs. Compos Struct. 2013;96:143–52.

    Article  Google Scholar 

  37. Zhang X, Cheng G, Wang B, Zhang H. Optimum design for energy absorption of bitubal hexagonal columns with honeycomb core. Int J Crashworthiness. 2008;13(1):99–107.

    Article  Google Scholar 

  38. Tang Z, Liu S, Zhang Z. Analysis of energy absorption characteristics of cylindrical multi-cell columns. Thin Wall Struct. 2013;62:75–84.

    Article  Google Scholar 

  39. Jusuf A, Dirgantara T, Gunawan L, Putra IS. Crashworthiness analysis of multi-cell prismatic structures. Int J Impact Engin. 2015;78:34–50.

    Article  Google Scholar 

  40. Zhang Y, Lu M, Wang CH, Sun G, Li G. Out-of-plane crashworthiness of bio-inspired self-similar regular hierarchical honeycombs. Compos Struct. 2016;144:1–13.

    Article  Google Scholar 

  41. Fang J, Sun G, Qiu N, Pang T, Li S, Li Q. On hierarchical honeycombs under out-of-plane crushing. Int J Solids Struct. 2018;135:1–13.

    Article  Google Scholar 

  42. Sun G, Jiang H, Fang J, Li G, Li Q. Crashworthiness of vertex based hierarchical honeycombs in out-of-plane impact. Mater Design. 2016;110:705–19.

    Article  Google Scholar 

  43. Sun G, Li G, Hou S, Zhou S, Li W, Li Q. Crashworthiness design for functionally graded foam-filled thin-walled structures. Mater Sci Engin A. 2010;527:1911–9.

    Article  Google Scholar 

  44. Zhang Y, Sun G, Li G, Luo Z, Li Q. Optimization of foam-filled bitubal structures for crashworthiness criteria. Mater Design. 2012;38:99–109.

    Article  Google Scholar 

  45. Yin H, Wen G, Hou S, Qing Q. Multiobjective crashworthiness optimization of functionally lateral graded foam-filled tubes. Mater Design. 2013;44:414–28.

    Article  Google Scholar 

  46. An X, Gao Y, Fang J, Sun G, Li Q. Crashworthiness design for foam-filled thin-walled structures with functionally lateral graded thickness sheets. Thin Wall Struct. 2015;91:63–71.

    Article  Google Scholar 

  47. Yin H, Xiao Y, Wen G, Gan N, Chen C, Dai J. Multi-objective robust optimization of foam-filled bionic thin-walled structures. Thin Wall Struct. 2016;109:332–43.

    Article  Google Scholar 

  48. Yin H, Wen G, Liu Z, Qing Q. Crashworthiness optimization design for foam-filled multi-cell thin-walled structures. Thin Wall Struct. 2014;75:8–17.

    Article  Google Scholar 

  49. Xiao Z, Fang J, Sun G, Li Q. Crashworthiness design for functionally graded foam-filled bumper beam. Adv Engin Softw. 2015;85:81–95.

    Article  Google Scholar 

  50. Yin H, Fang H, Xiao Y, Wen G, Qing Q. Multi-objective robust optimization of foam-filled tapered multi-cell thin-walled structures. Struct Multidisc Optim. 2015;52(6):1051–67.

    Article  Google Scholar 

  51. Yin H, Wen G, Hou S, Chen K. Crushing analysis and multiobjective crashworthiness optimization of honeycomb-filled single and bitubular polygonal tubes. Mater Design. 2011;32:4449–60.

    Article  Google Scholar 

  52. Wang B, Ding Q, Sun Y, Yu S, Ren F, Cao X, Du Y. Enhanced tunable fracture properties of the high stiffness hierarchical honeycombs with stochastic voronoi substructures. Res in Phys. 2019;12:1190–6.

    Google Scholar 

  53. Greaves GN, Greer AL, Lakes RS, Rouxel T. Poisson’s ratio and modern materials. Nat Mater. 2011;10:823–37.

    Article  Google Scholar 

  54. Spadoni A, Ruzzene M, Gonella S, Scarpa F. Phononic properties of hexagonal chiral lattices. Wave Motion. 2009;46:435–50.

    Article  MATH  Google Scholar 

  55. Bezazi A, Scarpa F. Tensile fatigue of conventional and negative Poisson’s ratio open cell PU foams. Int J Fatigue. 2009;31:488–94.

    Article  Google Scholar 

  56. Zhang Q, Yang X, Li P, Huang G, Feng S, Shen C, Han B, Zhang X, Jin F, Xu F, Lu T. Bioinspired engineering of honeycomb structure - Using nature to inspire human innovation. Prog Mater Sci. 2015;74:332–400.

    Article  Google Scholar 

  57. Chen Z, Wang Z, Zhou S, Shao J, Wu X. Novel Negative Poisson’s Ratio Lattice Structures with Enhanced Stiffness and Energy Absorption Capacity. Mater. 2018;11:1095.

    Article  Google Scholar 

  58. Kai Z, Su Y, Zhao P, Deng Z. Tunable wave propagation in octa-chiral lattices with local resonators. Compos Struct. 2019;220:114–26.

    Article  Google Scholar 

  59. Sun Y, Pugno N. Hierarchical fibers with a negative Poisson’s ratio for tougher composites. Mater. 2013;6:699–712.

    Article  Google Scholar 

  60. Sun Y, Pugno N. In plane stiffness of multifunctional hierarchical honeycombs with negative Poisson’s ratio sub-structures. Compos Struct. 2013;106:681–9.

    Article  Google Scholar 

  61. Dolla WJ, Fricke BA, Becker BR. Structural and drug diffusion models of conventional and auxetic drug-eluting stents. J Med Devices. 2006;1(1):47–55.

    Article  Google Scholar 

  62. Dolla WJ, Fricke BA. Auxetic drug-eluting stent design. Proceedings of NanoBio2006 Frontiers in Biomedical Devices Conference. 2006; 8–9.

  63. Cui S, Gong B, Ding Q, Sun Y, Ren F, Liu X, Yan Q, Yang H, Wang X, Song B. Mechanical metamaterials foams with tunable negative Poisson’s ratio for enhanced energy absorption and damage resistance. Mater. 2018;11:1869.

    Article  Google Scholar 

  64. Lira C, Scarpa F, Tai YH, Yates JR. Transverse shear modulus of SILICOMB cellular structures. Compos Sci Techn. 2011;71:1236–41.

    Article  Google Scholar 

  65. Virk K, Monti A, Trehard T, Marsh M, Hazra K, Boba K, Remillat CDL, Scarpa F, Farrow IR. SILICOMB peek Kirigami cellular structures: mechanical response and energy dissipation through zero and negative stiffness. Smart Mater Struct. 2013;22(8): 084014.

    Article  Google Scholar 

  66. Chen Y, Scarpa F, Remillat C, Farrow I, Liu Y, Leng J. Curved Kirigami SILICOMB cellular structures with zero Poisson’s ratio for large deformations and morphing. J Intell Mater Syst Struct. 2014;25(6):731–43.

    Article  Google Scholar 

  67. Xiao Y, Yin H, Fang H, Wen G. Crashworthiness design of horsetail-bionic thin-walled structures under axial dynamic loading. Int J Mech Mater Design. 2016;12(4):563–76.

    Article  Google Scholar 

Download references

Acknowledgements

We appreciated Zhichang Qin for analysis data of the manuscript.

Funding

The project was supported by the National Natural Science Foundation of China (Grant Nos. 12021002, 12072222, 12132010 and 11991032) and the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures (Grant No. SKLTESKF1901).

Author information

Authors and Affiliations

Authors

Contributions

B.W. analyzed and interpreted accurate finite element model of the Convex-concave honeycomb, and was a major contributor in writing the manuscript. Y.S. performed the result examination of the Convex-concave honeycomb. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yongtao Sun.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Consent to Participate

The authors consent to participate and they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

All data generated or analyzed during this study are included in this published article.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Sun, Y. Innovative Thin-Walled Structure with Transverse Negative Poisson's Ratio for High-Performance Crashworthiness. Acta Mech. Solida Sin. 36, 34–44 (2023). https://doi.org/10.1007/s10338-022-00356-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-022-00356-x

Keywords

Navigation