Skip to main content
Log in

Crystal Plasticity-Based Spalling Damage Model for Ductile Metals

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Spalling is a typical tensile failure that results from the coupling evolution of microstructure and microdamage under high strain-rate loading. To understand the spalling damage behavior of polycrystalline materials at mesoscale, this paper develops a spalling model by integrating the crystal plasticity theory and the microvoid growth theory. The model is implemented in ABAQUS simulation via the VUMAT subroutine to simulate a planar impact process of copper, and the results are compared with experimental data. Due to the inhomogeneity of crystal plastic slip, the local stress fluctuates severely near the grain boundary. Therefore, without introducing the fluctuation in the threshold stress for microdamage evolution, this model can simulate the heterogeneous feature of microvoid nucleation, growth, and coalescence in materials. The results show that microvoids tend to nucleate at 25°–50° misorientation angle grain boundaries, which undergo a high probability of stress fluctuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bai Y, Wang H, Xie M, Ke F. Statistical mesomechanics of solid, linking coupled multiple space and time scales. Adv Mech. 2006;36(2):286–305.

    Google Scholar 

  2. Meyers MA, Aimone CT. Dynamic fracture by spalling of metals. J Met. 1982;35(12):A55–A55.

    Google Scholar 

  3. Curran DR, Seaman L, Shockey DA. Dynamic failure of solids. Phys Rep. 1987;147(5):253–388. https://doi.org/10.1016/0370-1573(87)90049-4.

    Article  Google Scholar 

  4. Escobedo JP, Cerreta EK, Dennis-Koller D, Patterson BM, Bronkhorst CA. Influence of shock loading kinetics on the spall response of copper. In: Buttler W, Furlanetto M, Evans W, editors. 18th Aps-Sccm and 24th Airapt, Pts. Berlin: Springer; 2014. p. 1–19.

    Google Scholar 

  5. Remington TP, Hahn EN, Zhao S, Flanagan R, Mertens JCE, Sabbaghianrad S, Langdon TG, Wehrenberg CE, Maddox BR, Swift DC, Remington BA, Chawla N, Meyers MA. Spall strength dependence on grain size and strain rate in tantalum. Acta Mater. 2018;158:313–29. https://doi.org/10.1016/j.actamat.2018.07.048.

    Article  Google Scholar 

  6. Cheng M, Li C, Tang MX, Lu L, Li Z, Luo SN. Intragranular void formation in shock-spalled tantalum: mechanisms and governing factors. Acta Mater. 2018;148:38–48. https://doi.org/10.1016/j.actamat.2018.01.029.

    Article  Google Scholar 

  7. Cerreta EK, Escobedo JP, Perez-Bergquist A, Koller DD, Trujillo CP, Gray Iii GT, Brandl C, Germann TC. Early stage dynamic damage and the role of grain boundary type. Scr Mater. 2012;66(9):638–41. https://doi.org/10.1016/j.scriptamat.2012.01.051.

    Article  Google Scholar 

  8. Perez-Bergquist AG, Cerreta EK, Trujillo CP, Cao F, Gray GT. Orientation dependence of void formation and substructure deformation in a spalled copper bicrystal. Scr Mater. 2011;65(12):1069–72. https://doi.org/10.1016/j.scriptamat.2011.09.015.

    Article  Google Scholar 

  9. Wayne L, Krishnan K, DiGiacomo S, Kovvali N, Peralta P, Luo SN, Greenfield S, Byler D, Paisley D, McClellan KJ, Koskelo A, Dickerson R. Statistics of weak grain boundaries for spall damage in polycrystalline copper. Scr Mater. 2010;63(11):1065–8. https://doi.org/10.1016/j.scriptamat.2010.08.003.

    Article  Google Scholar 

  10. Nie J, Liu Y, Lin P, Xie Q, Liu Z. A crystal plasticity model with irradiation effect for the mechanical behavior of FCC metals. Acta Mech Solida Sin. 2019;32(6):675–87. https://doi.org/10.1007/s10338-019-00145-z.

    Article  Google Scholar 

  11. Xie Q, Zhu Z, Kang G. Crystal-plasticity-based dynamic constitutive model of AZ31B magnesium alloy at elevated temperature and with explicit plastic-strain-rate control. Acta Mech Solida Sin. 2020;33(1):31–50. https://doi.org/10.1007/s10338-019-00130-6.

    Article  Google Scholar 

  12. Hill R. Generalized constitutive relations for incremental deformation of metal crystals by multislip. J Mech Phys Solids. 1966;14(2):95–102. https://doi.org/10.1016/0022-5096(66)90040-8.

    Article  Google Scholar 

  13. Asaro RJ. Micromechanics of crystals and polycrystals. In: Hutchinson JW, Wu TY, editors. Advances in applied mechanics. Amsterdam: Elsevier; 1983. p. 1–115.

    Google Scholar 

  14. Hill R. The essential structure of constitutive laws for metal composites and polycrystals. J Mech Phys Solids. 1967;15(2):79–95. https://doi.org/10.1016/0022-5096(67)90018-X.

    Article  Google Scholar 

  15. Asaro RJ. Crystal plasticity. J Appl Mech. 1983;50(4b):921–34. https://doi.org/10.1115/1.3167205.

    Article  MATH  Google Scholar 

  16. Yuan S, Zhu Y, Huang M, Liang S, Li Z. Dislocation-density based crystal plasticity model with hydrogen-enhanced localized plasticity in polycrystalline face-centered cubic metals. Mech Mater. 2020;148:103472. https://doi.org/10.1016/j.mechmat.2020.103472.

    Article  Google Scholar 

  17. Lu X, Zhang X, Shi M, Roters F, Kang G, Raabe D. Dislocation mechanism based size-dependent crystal plasticity modeling and simulation of gradient nano-grained copper. Int J Plasticity. 2019;113:52–73. https://doi.org/10.1016/j.ijplas.2018.09.007.

    Article  Google Scholar 

  18. Liu J, Ye C, Liu G, Shen Y. Crystal plasticity finite element theoretical models and applications for high temperature, high pressure and high strain-rate dynamic process, Gaoyawli. Acta High Press Phys. 2020;34(3):030.

    Google Scholar 

  19. Ling C, Forest S, Besson J, Tanguy B, Latourte F. A reduced micromorphic single crystal plasticity model at finite deformations. Application to strain localization and void growth in ductile metals. Int J Solids Struct. 2018;134:43–69. https://doi.org/10.1016/j.ijsolstr.2017.10.013.

    Article  Google Scholar 

  20. Vogler TJ, Clayton JD. Heterogeneous deformation and spall of an extruded tungsten alloy: plate impact experiments and crystal plasticity modeling. J Mech Phys Solids. 2008;56(2):297–335. https://doi.org/10.1016/j.jmps.2007.06.013.

    Article  Google Scholar 

  21. Clayton JD. Modeling dynamic plasticity and spall fracture in high density polycrystalline alloys. Int J Solids Struct. 2005;42(16):4613–40. https://doi.org/10.1016/j.ijsolstr.2005.02.031.

    Article  MATH  Google Scholar 

  22. Wilkerson JW, Ramesh KT. A dynamic void growth model governed by dislocation kinetics. J Mech Phys Solids. 2014;70:262–80. https://doi.org/10.1016/j.jmps.2014.05.018.

    Article  Google Scholar 

  23. Wilkerson JW, Ramesh KT. A closed-form criterion for dislocation emission in nano-porous materials under arbitrary thermomechanical loading. J Mech Phys Solids. 2016;86:94–116. https://doi.org/10.1016/j.jmps.2015.10.005.

    Article  MATH  Google Scholar 

  24. Clifton R, Raiser G, Ortiz M, Espinosa H, et al. A soft recovery experiment for ceramics. In: Schmidt SC, et al., editors. Shock compression of condensed matter. Amsterdam: Elsevier; 1989.

    Google Scholar 

  25. Huang Y. A user-material subroutine incroporating single crystal plasticity in the ABAQUS finite element program. Cambridge: Harvard Univ; 1991.

    Google Scholar 

  26. Czarnota C, Jacques N, Mercier S, Molinari A. Modelling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalum. J Mech Phys Solids. 2008;56(4):1624–50.

    Article  Google Scholar 

  27. Meyers MA. Dynamic behavior of materials. Hoboken: Wiley; 1994.

    Book  MATH  Google Scholar 

  28. Hutchinson JW, Hill R. Bounds and self-consistent estimates for creep of polycrystalline materials. Proc R Soc Lond A Math Phys Sci. 1976;348(1652):101–27. https://doi.org/10.1098/rspa.1976.0027.

    Article  MATH  Google Scholar 

  29. Bassani JL, Wu T-Y. Latent hardening in single crystals. II. Analytical characterization and predictions. Proc R Soc Lond Ser A Math Phys Sci. 1893;1991(435):21–41. https://doi.org/10.1098/rspa.1991.0128.

    Article  MATH  Google Scholar 

  30. Czarnota C, Mercier S, Molinari A. Modelling of nucleation and void growth in dynamic pressure loading, application to spall test on tantalum. Int J Fract. 2006;141(1):177–94.

    Article  Google Scholar 

  31. Ledbetter HM, Naimon ER. Elastic properties of metals and alloys. II. Copper. J Phys Chem Ref Data. 1974;3(4):897–935. https://doi.org/10.1063/1.3253150.

    Article  Google Scholar 

  32. Johnson JN. Dynamic fracture and spallation in ductile solids. J Appl Phys. 1981;52(4):2812–25. https://doi.org/10.1063/1.329011.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSFC (Nos.12172367, 11790292, 11988102, and U2141204), the Strategic Priority Research Program (Nos. XDB22040302 and XDB22040303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Ying Wang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest in this work. And we declare that we do not have any commercial or associative interest representing a conflict of interest in connection with the work submitted.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Wang, HY. & Dai, LH. Crystal Plasticity-Based Spalling Damage Model for Ductile Metals. Acta Mech. Solida Sin. 36, 76–85 (2023). https://doi.org/10.1007/s10338-022-00353-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-022-00353-0

Keywords

Navigation