Skip to main content

Advertisement

Log in

Dynamic Behavior and Vibration Suppression of a Generally Restrained Pre-pressure Beam Structure Attached with Multiple Nonlinear Energy Sinks

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Beam structures are extensively used in many engineering branches. For marine engineering, the ship shafting system is generally simplified as a vibration model with single or multiple beam structures connected by the coupling stiffness. In engineering, multiple nonlinear energy sinks (NESs) can be arranged on the premise of sufficient installation space to ensure their vibration suppression effect. Considering engineering practice, this study investigates the dynamic behavior and vibration suppression of a generally restrained pre-pressure beam structure with multiple uniformly distributed NESs, where the pre-pressure is typically caused by thrust bearings, installation ways, and others. System governing equations are derived through the generalized Hamiltonian principle and the variational procedure. Dynamic responses of the pre-pressure beam structure are predicted by the Galerkin truncation method. The effect of NESs on dynamic responses and vibration suppression of the pre-pressure beam structure is studied and discussed. Suitable parameters of NESs have a beneficial effect on the vibration suppression at both ends of the pre-pressure beam structure. NESs can modify the vibration frequency and energy transmission characteristics of the vibration system. For different boundary conditions, the optimized parameters of NESs significantly suppress the vibration energy of the pre-pressure beam structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Abbas BAH, Irretier H. Experimental and theoretical investigations of the effect of root flexibility on the vibration characteristics of cantilever beams. J Sound Vib. 1989;130(3):353–62.

    Article  Google Scholar 

  2. Register AH. A note on the vibrations of generally restrained, end-loaded beams. J Sound Vib. 1994;172(4):561–71.

    Article  MATH  Google Scholar 

  3. Kang KH, Kim KJ. Modal properties of beams and plates on resilient supports with rotational and translational complex stiffness. J Sound Vib. 1996;190(2):207–20.

    Article  Google Scholar 

  4. Wang JTS, Lin CC. Dynamic analysis of generally supported beams using Fourier series. J Sound Vib. 1996;196(3):285–93.

    Article  Google Scholar 

  5. Kim HK, Kim MS. Vibration of beams with generally restrained boundary conditions using Fourier series. J Sound Vib. 2001;245(5):771–84.

    Article  Google Scholar 

  6. Li WL. Free vibrations of beams with general boundary conditions. J Sound Vib. 2000;237(4):709–25.

    Article  Google Scholar 

  7. Wang QS, Shi DY, Liang Q. Free vibration analysis of axially loaded laminated composite beams with general boundary conditions by using a modified Fourier-Ritz approach. J Compos Mater. 2016;50(15):2111–35.

    Article  Google Scholar 

  8. Chen LJ, Xu DS, Du JT, Zhong CW. Flexural vibration analysis of nonuniform double-beam system with general boundary and coupling conditions. Shock Vib. 2018;2018:5103174.

    Google Scholar 

  9. Chen Q, Du JT. A Fourier series solution for the transverse vibration of rotating beams with elastic boundary supports. Appl Acoust. 2019;155:1–15.

    Article  Google Scholar 

  10. Xu DS, Du JT, Tian C. Vibration characteristics and power flow analyses of a ship propulsion shafting system with general support and thrust loading. Shock Vib. 2020;2020:3761590.

    Google Scholar 

  11. Vakakis AF. Inducing passive nonlinear energy sinks in vibrating systems. J Vib Acoust. 2001;123(3):324–32.

    Article  Google Scholar 

  12. Gendelman OV. Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators. Nonlinear Dyn. 2001;25:237–53.

    Article  MATH  Google Scholar 

  13. Gendelman O, Manevitch LI, Vakakis AF, Closkey RM. Energy pumping in nonlinear mechanical oscillators: part I—dynamics of the underlying Hamiltonian systems. J Appl Mech. 2001;68(1):34–41.

    Article  MATH  Google Scholar 

  14. Vakakis AF, Gendelman O. Energy pumping in nonlinear mechanical oscillators: part II—resonance capture. J Appl Mech. 2001;68(1):42–8.

    Article  MATH  Google Scholar 

  15. Jiang XA, Mcfarland DM, Bergman LA, Vakakis AF. Steady state passive nonlinear energy pumping in coupled oscillators: theoretical and experimental results. Nonlinear Dyn. 2003;33:87–102.

    Article  MATH  Google Scholar 

  16. Vakakis AF. Designing a linear structure with a local nonlinear attachment for enhanced energy pumping. Meccanica. 2003;38:677–86.

    Article  MATH  Google Scholar 

  17. Vakakis AF. Passive nonlinear targeted energy transfer. Phil Trans R Soc A. 2018;376:20170132.

    Article  MATH  Google Scholar 

  18. Vakakis AF. Relaxation oscillations, subharmonic orbits and chaos in the dynamics of a linear lattice with a local essentially nonlinear attachment. Nonlinear Dyn. 2010;61:443–63.

    Article  MATH  Google Scholar 

  19. Sapsis TP, Quinn DD, Vakakis AF, Bergman LA. Effective stiffening and damping enhancement of structures with strongly nonlinear local attachments. J Vib Acoust. 2012;134(1):011016.

    Article  Google Scholar 

  20. Zhang YW, Lu YN, Zhang W, Teng YY, Yang HX, Yang TZ, Chen LQ. Nonlinear energy sink with inerter. Mech Syst Signal Process. 2018;125(15):52–64.

    Google Scholar 

  21. Zhang J, Zhang YW, Ding H, Yang TZ, Chen LQ. The evaluation of a nonlinear energy sink absorber based on the transmissibility. Mech Syst Signal Process. 2019;125:99–122.

    Article  Google Scholar 

  22. Chen LQ, Li X, Lu ZQ, Zhang YW, Ding H. Dynamic effects of weights on vibration reduction by a nonlinear energy sink moving vertically. J Sound Vib. 2019;451:99–109.

    Article  Google Scholar 

  23. Lee YS, Vakakis AF, Bergman LA, Mcfarland DM, Kerschen G, Nucera F, Tsakirtzis S, Panagopoulos PN. Passive non-linear targeted energy transfer and its applications to vibration absorption: a review. Proc Inst Mech Eng K J Multi-body Dyn. 2008;222(2):77–134.

    Google Scholar 

  24. Gatti G, Brennan MJ, Tang B. Some diverse examples of exploiting the beneficial effects of geometric stiffness nonlinearity. Mech Syst Signal Process. 2019;125:4–20.

    Article  Google Scholar 

  25. Ding H, Chen LQ. Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 2020;100:3061–107.

    Article  Google Scholar 

  26. Georgiades F, Vakakis AF. Dynamics of a linear beam with an attached local nonlinear energy sink. Commun Nonlinear Sci Numer Simul. 2007;12:643–51.

    Article  MATH  Google Scholar 

  27. Samani FS, Pellicano F. Vibration reduction on beams subjected to moving loads using linear and nonlinear dynamic absorbers. J Sound Vib. 2009;325:742–54.

    Article  Google Scholar 

  28. Samani FS, Pellicano F. Vibration reduction of beams under successive traveling loads by means of linear and nonlinear dynamic absorbers. J Sound Vib. 2012;331:2272–90.

    Article  Google Scholar 

  29. Ahmadabadi ZN, Khadem SE. Nonlinear vibration control of a cantilever beam by a nonlinear energy sink. Mech Mach Theory. 2012;50:134–49.

    Article  Google Scholar 

  30. Ahmadabadi ZN, Khadem SE. Nonlinear vibration control and energy harvesting of a beam using a nonlinear energy sink and a piezoelectric device. J Sound Vib. 2014;333:4444–57.

    Article  Google Scholar 

  31. Parseh M, Dardel M, Ghasemi MH. Investigating the robustness of nonlinear energy sink in steady state dynamics of linear beams with different boundary conditions. Commun Nonlinear Sci Numer Simul. 2015;29:50–71.

    Article  MATH  Google Scholar 

  32. Kani M, Khadem SE, Pashaei MH, Dardel M. Vibration control of a nonlinear beam with a nonlinear energy sink. Nonlinear Dyn. 2015;83:1–22.

    Article  Google Scholar 

  33. Kani M, Khadem SE, Pashaei MH, Dardel M. Design and performance analysis of a nonlinear energy sink attached to a beam with different support conditions. J Mech Eng Sci. 2015;230(4):527–42.

    Article  Google Scholar 

  34. Bab S, Khadem SE, Mahdiabadi MK, Shahgholi M. Vibration mitigation of a rotating beam under external periodic force using a nonlinear energy sink (NES). J Vib Control. 2015;23(6):1001–25.

    Article  Google Scholar 

  35. Parseh M, Dardel M, Ghasemi MH, Pashaei MH. Steady state dynamics of a non-linear beam coupled to a non-linear energy sink. Int J Non-Linear Mech. 2016;79:48–65.

    Article  Google Scholar 

  36. Zhang YW, Hou S, Xu KF, Yang TZ, Chen LQ. Forced vibration control of an axially moving beam with an attached nonlinear energy sink. Acta Mech Solida Sin. 2017;30:674–82.

    Article  Google Scholar 

  37. Chen JE, He W, Zhang W, Yao MH, Liu J, Sun M. Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks. Nonlinear Dyn. 2018;91:885–904.

    Article  Google Scholar 

  38. Fang X, Wen JH, Yin JF, Yu DL. Highly efficient continuous bistable nonlinear energy sink composed of a cantilever beam with partial constrained layer damping. Nonlinear Dyn. 2017;87:2677–95.

    Article  Google Scholar 

  39. Li HQ, Touze C, Pelat A, Gautier F. Combining nonlinear vibration absorbers and the Acoustic Black Hole for passive broadband flexural vibration mitigation. Int J Non-Linear Mech. 2021;129:103558.

    Article  Google Scholar 

  40. Zhang Z, Ding H, Zhang YW, Chen LQ. Vibration suppression of an elastic beam with boundary inerter-enhanced nonlinear energy sinks. Acta Mech Solida Sin. 2021;37(3):387–401.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11972125) and the Fok Ying Tung Education Foundation (Grant No. 161049).

Author information

Authors and Affiliations

Authors

Contributions

All authors agree to publish the article “Dynamic Behavior and Vibration Suppression of a Generally Restrained Pre-pressure Beam Structure Attached with Multiple Nonlinear Energy Sinks”. According to the authors’ contributions to this work, the author’s rank is Yuhao Zhao, Jingtao Du, Yilin Chen, and Yang Liu. Jingtao Du is the corresponding author.

Corresponding author

Correspondence to Jingtao Du.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendices

Appendix A

$$ T_{\text{B}} = \int_{0}^{L} {\frac{1}{2}\rho S} \left( {\frac{\partial u}{{\partial t}}} \right)^{2} {\text{d}} t $$
(A-1)
$$ T_{\text{NES}} = \sum\limits_{z = 1}^{\text{Z}} {\left( {\frac{1}{2}m_{\text{NES}} \frac{{{\text{d}} u_{z} }}{{{\text{d}} t}}} \right)^{2} } $$
(A-2)
$$ V_{{\text{B}}} = \int_{0}^{L} {\frac{1}{2}EI} \left( {\frac{{\partial^{2} u}}{{\partial x^{2} }}} \right)^{2} {\text{d}} x $$
(A-3)
$$ V_{{\text{P}}} = \int_{0}^{L} {\frac{1}{2}P} \left( {\frac{\partial u}{{\partial x}}} \right)^{2} {\text{d}} x $$
(A-4)
$$ \begin{aligned} V_{\text{Boundary}} & = \frac{1}{2}k_{\text{L}} \left[ {u\left( {0,t} \right)} \right]^{2} + \frac{1}{2}k_{\text{R}} \left[ {u\left( {L,t} \right)} \right]^{2} \\ & \quad + \frac{1}{2}K_{\text{L}} \left[ {\frac{{\partial u\left( {0,t} \right)}}{\partial x}} \right]^{2} + \frac{1}{2}K_{\text{R}} \left[ {\frac{{\partial u\left( {L,t} \right)}}{\partial x}} \right]^{2} \\ \end{aligned} $$
(A-5)
$$ V_{\text{NES}} = \frac{1}{4}k_{\text{NES}} \sum\limits_{\text{z} = 1}^{Z} {\left[ {u_{z} - u\left( {x_{z} ,t} \right)} \right]^{4} } $$
(A-6)
$$ \delta W_{\text{B}} = - \int_{0}^{L} {C_{\text{B}} } \frac{\partial u}{{\partial t}}\delta u{\text{d}} x $$
(A-7)
$$ \delta W_{\text{NES}} = - C_{{\text{NES}}} \sum\limits_{z = 1}^{Z} {\left\{ {\left[ {\frac{{{\text{d}} u_{z} }}{{{\text{d}} t}} - \frac{{\partial u\left( {x_{z} ,t} \right)}}{\partial t}} \right]\delta \left[ {u_{z} - u\left( {x_{z} ,t} \right)} \right]} \right\}} $$
(A-8)
$$ \delta W_{\text{F}} = - \int_{0}^{L} {{\text{Dirca}} \left( {x - x_{\text{F}} } \right)F_{0} \sin \left( {\omega t} \right)} \delta u{\text{d}} x $$
(A-9)

Appendix B

$$ \int_{{t_{1} }}^{{t_{2} }} {\delta T_{\text{B}} {\text{d}} t = } - \int_{{t_{1} }}^{{t_{2} }} {\int_{0}^{L} {\rho S\frac{{\partial^{2} u}}{\partial t}} } \delta u{\text{d}} x{\text{d}} t $$
(B-1)
$$ \int_{{t_{1} }}^{{t_{2} }} {\delta T_{\text{NES}} {\text{d}} t} = - \sum\limits_{z = 1}^{Z} {\left( {\int_{{t_{1} }}^{{t_{2} }} {m_{\text{NES}} \frac{{{\text{d}}^{2} u_{z} }}{{{\text{d}} t^{2} }}\delta u_{z} } {\text{d}} t} \right)} $$
(B-2)
$$ \begin{aligned} \int_{{t_{1} }}^{{t_{2} }} {\delta V_{{\text{B}}} {\text{d}} t} & = \int_{{t_{1} }}^{{t_{2} }} {\int_{0}^{L} {EI\frac{{\partial^{4} u}}{{\partial x^{4} }}} \delta u{\text{d}} x{\text{d}} t} \\ & \quad + \int_{{t_{1} }}^{{t_{2} }} {\left[ \begin{gathered} - EI\frac{{\partial^{2} u\left( {0,t} \right)}}{{\partial x^{2} }}\delta \left( {\frac{\partial u}{{\partial x}}} \right) + EI\frac{{\partial^{3} u\left( {0,t} \right)}}{{\partial x^{3} }}\delta u \hfill \\ + EI\frac{{\partial^{2} u\left( {L,t} \right)}}{{\partial x^{2} }}\delta \left( {\frac{\partial u}{{\partial x}}} \right) - EI\frac{{\partial^{3} u\left( {L,t} \right)}}{{\partial x^{3} }}\delta u \hfill \\ \end{gathered} \right]} {\text{d}} t \\ \end{aligned} $$
(B-3)
$$ \int_{{t_{1} }}^{{t_{2} }} {\delta V_{\text{P}} {\text{d}} t} = P\frac{{\partial u\left( {0,t} \right)}}{\partial x}\delta u - P\frac{{\partial u\left( {L,t} \right)}}{\partial x}\delta u + \int_{{t_{1} }}^{{t_{2} }} {\int_{0}^{L} {P\frac{{\partial^{2} u}}{{\partial x^{2} }}\delta u{\text{d}} x{\text{d}} } t} $$
(B-4)
$$ \int_{{t_{1} }}^{{t_{2} }} {\delta V_{\text{Boundary}} {\text{d}} t} = \int_{{t_{1} }}^{{t_{2} }} {\left[ \begin{gathered} k_{\text{L}} u\left( {0,t} \right)\delta u + K_{\text{L}} \frac{{\partial u\left( {0,t} \right)}}{\partial x}\delta \left( {\frac{\partial u}{{\partial x}}} \right) \hfill \\ \quad + k_{\text{R}} u\left( {L,t} \right)\delta u + K_{\text{R}} \frac{{\partial u\left( {L,t} \right)}}{\partial x}\delta \left( {\frac{\partial u}{{\partial x}}} \right) \hfill \\ \end{gathered} \right]{\text{d}} t} $$
(B-5)
$$ \int_{{t_{1} }}^{{t_{2} }} {\delta V_{\text{NES}} {\text{d}} t} = \sum\limits_{z = 1}^{Z} {\left\{ {\int_{{t_{1} }}^{{t_{2} }} {k_{\text{NES}} \left[ {u_{z} - u\left( {x_{z} ,t} \right)} \right]^{3} \delta \left[ {u_{z} - u\left( {x_{z} ,t} \right)} \right]{\text{d}} t} } \right\}} $$
(B-6)
$$ \int_{{t_{1} }}^{{t_{2} }} {\delta W_{\text{B}} {\text{d}} t} = - \int_{{t_{1} }}^{{t_{2} }} {\int_{0}^{L} {C_{\text{B}} } \frac{\partial u}{{\partial t}}\delta u{\text{d}} x{\text{d}} t} $$
(B-7)
$$ \int_{{t_{1} }}^{{t_{2} }} {\delta W_{\text{NES}} {\text{d}} t} = - \sum\limits_{z = 1}^{{Z}} {\int_{{t_{1} }}^{{t_{2} }} {C_{\text{NES}} \left[ {\frac{{{\text{d}} u_{z} }}{{{\text{d}} t}} - \frac{{\partial u\left( {x_{z} ,t} \right)}}{\partial t}} \right]\delta \left[ {u_{z} - u\left( {x_{z} ,t} \right)} \right]{\text{d}} t} } $$
(B-8)
$$ \int_{{t_{1} }}^{{t_{2} }} {\delta W_{\text{F}} {\text{d}} t} = - \int_{{t_{1} }}^{{t_{2} }} {\int_{0}^{L} {\delta \left( {x - x_{\text{F}} } \right)F_{0} \sin \left( {\omega t} \right)} \delta u{\text{d}} x{\text{d}} t} $$
(B-9)

Appendix C

$$ R_{m1} = \int_{0}^{L} {\rho S\left[ {\sum\limits_{i = 1}^{{N}} {\varphi_{i} \left( x \right)\frac{{{\text{d}}^{2} q_{i} \left( t \right)}}{{{\text{d}} t^{2} }}} } \right]\psi_{m} \left( x \right){\text{d}} x} $$
(C-1)
$$ R_{m2} = \int_{0}^{L} {C_{\text{B}} \left[ {\sum\limits_{i = 1}^{{N}} {\varphi_{i} \left( x \right)\frac{{{\text{d}} q_{i} \left( t \right)}}{{{\text{d}} t}}} } \right]\psi_{m} \left( x \right){\text{d}} x} $$
(C-2)
$$ R_{m3} = \int_{0}^{L} {EI\left[ {\sum\limits_{i = 1}^{{N}} {\frac{{{\text{d}}^{4} \varphi_{i} \left( x \right)}}{{{\text{d}} x^{4} }}q_{i} \left( t \right)} } \right]\psi_{m} \left( x \right){\text{d}} x} $$
(C-3)
$$ R_{m4} = \int_{0}^{L} {P\left[ {\sum\limits_{i = 1}^{{N}} {\frac{{{\text{d}}^{2} \varphi_{i} \left( x \right)}}{{{\text{d}} x^{2} }}q_{i} \left( t \right)} } \right]\psi_{m} \left( x \right){\text{d}} x} $$
(C-4)
$$ R_{m5} = \psi_{m} \left( {x_{F} } \right)F_{0} \sin \left( {\omega t} \right) $$
(C-5)
$$ R_{m6} = \sum\limits_{z = 1}^{Z} {\left\{ {C_{\text{NES}} \left[ {\sum\limits_{{{\text{i}} = 1}}^{{N}} {\varphi_{i} \left( {x_{z} } \right)\frac{{{\text{d}} q_{i} \left( t \right)}}{{{\text{d}} t}}} - u_{z} \left( t \right)} \right]\psi_{m} \left( {x_{z} } \right)} \right\}} $$
(C-6)
$$ R_{{m{7}}} = \sum\limits_{z = 1}^{{Z}} {\left\{ {k_{\text{NES}} \left[ {\sum\limits_{i = 1}^{{N}} {\varphi_{i} \left( {x_{z} } \right)q_{i} \left( t \right)} - u_{z} \left( t \right)} \right]^{3} \psi_{m} \left( {x_{z} } \right)} \right\}} $$
(C-7)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Du, J., Chen, Y. et al. Dynamic Behavior and Vibration Suppression of a Generally Restrained Pre-pressure Beam Structure Attached with Multiple Nonlinear Energy Sinks. Acta Mech. Solida Sin. 36, 116–131 (2023). https://doi.org/10.1007/s10338-022-00350-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-022-00350-3

Keywords

Navigation