Skip to main content
Log in

Mechanics and Wave Propagation Characterization of Chiral S-Shaped Auxetic Metastructure

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Auxetic metastructures have attracted tremendous attention because of their robust multifunctional properties and promising potential industrial applications. This paper studies the in-plane mechanical behaviors of a chiral S-shaped metastructure subjected to tensile loading in both X-direction and Y-direction and wave propagation properties using the finite element (FE) method. The relationships between structural parameters and elastic behaviors are also discussed. The results indicate that the orientation of chiral S-shaped metastructure under tensile loading in the X-direction exhibits higher auxeticity and stiffness. Then, the band structures and the edge modes of each band gap of the chiral S-shaped metastructure are explored, and the relations between band gap properties and structural parameters are also systematically analyzed. Moreover, we explore the wave mitigation of the chiral S-shaped metastructures by regulating the structural parameters. Finally, the transmission properties of the finite chiral S-shaped periodic metastructures are studied to confirm the results of band gap simulation. This study promotes the engineering application of vibration isolation of chiral structures based on the band gap theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Zhou X, Hu G. Analytic model of elastic metamaterials with local resonances. Phys Rev B. 2009;79:19.

    Google Scholar 

  2. Yang M, Ma G, Yang Z, Sheng P. Phys Rev Lett. 2013;110(13):134301.

    Article  Google Scholar 

  3. Zheng B-B, et al. An auxetic honeycomb structure with series-connected parallograms. Int J Mech Sci. 2019;161:105073.

    Article  Google Scholar 

  4. Fei X, et al. Three-dimensional anti-chiral auxetic metamaterial with tunable phononic bandgap. Appl Phys Lett. 2020;116(2):021902.

    Article  Google Scholar 

  5. Fozdar DY, et al. Three-dimensional polymer constructs exhibiting a tunable negative Poissons ratio. Adv Funct Mater. 2011;21(14):2712–20.

    Article  Google Scholar 

  6. Dolla WJS, Fricke BA, Becker BR. Auxetic drug-eluting stent design. In: Proceedings of the Frontiers in Biomedical Devices Conference 2007;11–12

  7. Arruebo M. Drug delivery from structured porous inorganic materials. Wires Nanomed Nanobi. 2012;4:16–30. https://doi.org/10.1002/wnan.132.

    Article  Google Scholar 

  8. Smith WA. Optimizing electromechanical coupling in piezocomposites using polymers with negative Poissons ratio. In: IEEE 1991 Ultrasonics Symposium, IEEE, 1991.

  9. Mark AG, et al. Auxetic metamaterial simplifies soft robot design. In: Proceedings of the 2016 IEEE international conference on robotics and automation (ICRA). IEEE, 2016.

  10. Guiducci L, et al. Pressurized honeycombs as soft-actuators: a theoretical study. J Roy Soc Interf. 2014;11(98):20140458.

    Article  Google Scholar 

  11. Hu LL, Deng H. Indentation resistance of the re-entrant hexagonal honeycombs with negative Poisson’s ratio. Mater Res Innov. 2015;19(S1). S1-442–S1-445.

  12. Fu M-H, Chen Yu, Ling-Ling H. A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength. Compos Struct. 2017;160:574–85.

    Article  Google Scholar 

  13. Tang C, et al. Numerical and experimental studies on the deformation of missing-rib and mixed structures under compression. Phys Status Solidi (B). 2020;257(10):2000150.

    Article  Google Scholar 

  14. Novak N, Vesenjak M, Tanaka S, Hokamoto K, Ren Z. Int J Impact Eng. 2020;141:103566.

    Article  Google Scholar 

  15. Tanaka H, Suga K, Iwata N, Shibutani Y. Sci Rep. 2017;7:39816.

    Article  Google Scholar 

  16. Xiong J, et al. Structural optimization of re-entrant negative Poissons ratio structure fabricated by selective laser melting. Mater Des. 2017;120:307–16.

    Article  Google Scholar 

  17. Jiang Y, et al. Limiting strain for auxeticity under large compressive Deformation: Chiral vs. re-entrant cellular solids. Int J Solids Struct. 2019;162:87–95.

    Article  Google Scholar 

  18. Grima JN, Alderson A, Evans KE. Negative Poissons ratios from rotating rectangles. Comput Methods Sci Technol. 2004;10(2):137–45.

    Article  Google Scholar 

  19. Gaspar N, Ren XJ, Smith CW, et al. Novel honeycombs with auxetic behaviour. Acta Mater. 2005;53(8):2439–45.

    Article  Google Scholar 

  20. Jiang YY, Li YN. Comparison of auxetic effects induced by re-entrant angle and charality. In: Proceedings of the 24th International Congress of Theoretical and Applied Mechanics, 2016.

  21. Meena K, Singamneni S. An elongated S-shaped auxetic mechanical meta-material structure. Mater Today Proc. 2020;33:5725–8.

    Article  Google Scholar 

  22. Nečemer B, Klemenc J, Glodež S. The computational LCF-analyses of chiral and Re-entrant auxetic structure using the direct cyclic algorithm. Mater Sci Eng A. 2020;789:139618.

    Article  Google Scholar 

  23. He JH, Huang HH. Tunable acoustic wave propagation through planar auxetic metamaterial. J Mech. 2018;34(2):113–22.

    Article  Google Scholar 

  24. D’Alessandro L, Zega V, Ardito R, et al. 3D auxetic single material periodic structure with ultra-wide tunable bandgap. Sci Rep. 2018;8(1):1–9.

  25. Ma Y, Scarpa F, Zhang D, et al. A nonlinear auxetic structural vibration damper with metal rubber particles. Smart Mater Struct. 2013;22(8):084012.

    Article  Google Scholar 

  26. Zhu R, Liu XN, Hu GK, et al. A chiral elastic metamaterial beam for broadband vibration suppression. J Sound Vib. 2014;333(10):2759–73.

    Article  Google Scholar 

  27. De Espinosa FM, Jimenez E, Torres M. Ultrasonic band gap in a periodic two-dimensional composite. Phys Rev Lett. 1998;80(6):1208.

    Article  Google Scholar 

  28. Jiang S, Hongping H, Vincent L. Ultra-wide band gap in two-dimensional phononic crystal with combined convex and concave holes. Phys Status Solidi (RRL)–Rapid Res Lett. 2018;12(2): 1700317.

  29. Xin Y, et al. Design and wave propagation characterization of starchiral metamaterials. Acta Mech Solida Sin. 2021;1–13.

  30. Liu Z, Zhang X, Mao Y, Zhu Y, Yang Z, Chan CT, Sheng P. Locally resonant sonic materials. Science. 2000;289(5485):1734–6.

    Article  Google Scholar 

  31. Shi H, Tay T, Lee H. Numerical studies on composite meta-material structure for mid to low frequency elastic wave mitigation. Comput Struct. 2018;195:136–46.

    Article  Google Scholar 

  32. Bacigalupo A, et al. Optimal design of low-frequency band gaps in anti-tetrachiral lattice meta-materials. Comp B Eng. 2017;115:341–59.

    Article  Google Scholar 

  33. Chen Y, Li T, Scarpa F, Wang L. Lattice metamaterials with mechanically tunable Poissons ratio for vibration control. Phys Rev Appl. 2017;7:2.

    Google Scholar 

  34. Trainiti G, Rimoli JJ, Ruzzene M. Wave propagation in undulated structural lattices. Int J Solids Struct. 2016;97–98:431–44.

    Article  Google Scholar 

  35. Jiang S, Hongping H, Laude V. Low-frequency band gap in cross-like holey phononic crystal strip. J Phys D Appl Phys. 2018;51(4):045601.

    Article  Google Scholar 

  36. Spadoni A, Ruzzene M, Gonella S, Scarpa F. Phononic properties of hexagonal chiral lattices. Wave Motion. 2009;46(7):435–50.

    Article  MathSciNet  Google Scholar 

  37. Brillouin L. Wave propagation in periodic structures: electric filters and crystal lattices. Courier Corporation 2003

Download references

Acknowledgements

The work is financially supported by the National Natural Science Foundation of China under the Grant Number of 12072241 and the Fundamental Research Funds for the Central Universities under the Grant Number of 2042022kf0009.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenwang Wu or Re Xia.

Ethics declarations

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Conflict of interest

There are no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Hong, W., Xu, J. et al. Mechanics and Wave Propagation Characterization of Chiral S-Shaped Auxetic Metastructure. Acta Mech. Solida Sin. 35, 571–586 (2022). https://doi.org/10.1007/s10338-022-00314-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-022-00314-7

Keywords

Navigation