Skip to main content
Log in

Geometrically Exact Finite Element Formulation for Tendon-Driven Continuum Robots

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Tendon-driven continuum robots achieve continuous deformations through the contraction of tendons embedded inside the robotic arms. For some continuum robots, the constant curvature assumption-based kinematic modeling can be accurate and effective. While for other cases, such as soft robots or robot-environment interactions, the constant curvature assumption can be inaccurate. To model the complex deformation of continuum robots, the geometrically exact beam theory (may also be called the Cosserat rod theory) has been used to develop computational mechanics models. Different from previous computational models that used finite difference schemes for the spatial discretization, here we develop a three-dimensional geometrically exact beam theory-based finite element model for tendon-driven continuum robots. Several numerical examples are presented to show the accuracy, efficiency, and applicability of our new computational model for tendon-driven continuum robots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Robinson G, Davies JBC. Continuum robots-a state of the art. IEEE Int Conf Robot Autom. 1999;4:2849–54. https://doi.org/10.1109/robot.1999.774029.

    Article  Google Scholar 

  2. Webster RJ III, Jones BA. Design and kinematic modeling of constant curvature continuum robots: a review. Int J Robot Res. 2010;29:1661–83.

    Article  Google Scholar 

  3. Camarillo DB, Milne CF, Carlson CR, Zinn MR, Salisbury JK. Mechanics modeling of tendon-driven continuum manipulators. IEEE Trans Robot. 2008;24:1262–73.

    Article  Google Scholar 

  4. Rucker DC, Jones BA, Webster RJ III. A geometrically exact model for externally loaded concentric-tube continuum robots. IEEE Trans Robot. 2010;26:769–80. https://doi.org/10.1109/TRO.2010.2062570.

    Article  Google Scholar 

  5. Jones BA, Walker ID. Kinematics for multisection continuum robots. IEEE Trans Robot. 2006;22:43–55.

    Article  Google Scholar 

  6. Trivedi D, Lotfi A, Rahn CD. Geometrically exact dynamic models for soft robotic manipulators. In: IEEERSJ international conference on intelligent robots and systems. IEEE, 2007. p. 1497–1502

  7. Chen S, Cao Y, Sarparast M, Yuan H, Dong L, Tan X, Cao C. Soft crawling robots: design, actuation, and locomotion. Adv Mater Technol. 2020;5:1900837. https://doi.org/10.1002/admt.201900837.

    Article  Google Scholar 

  8. Chen Z, Liang X, Wu T, Yin T, Xiang Y, Qu S. Pneumatically actuated soft robotic arm for adaptable grasping. Acta Mech Solida Sin. 2018;31:608–22. https://doi.org/10.1007/s10338-018-0052-4.

    Article  Google Scholar 

  9. Chen S, Pang Y, Yuan H, Tan X, Cao C. Smart soft actuators and grippers enabled by self-powered tribo-skins. Adv Mater Technol. 2020. https://doi.org/10.1002/admt.201901075.

    Article  Google Scholar 

  10. Zolfagharian A, Denk M, Bodaghi M, Kouzani AZ, Kaynak A. Topology-optimized 4D printing of a soft actuator. Acta Mech Solida Sin. 2020;33:418–30. https://doi.org/10.1007/s10338-019-00137-z.

    Article  Google Scholar 

  11. Zhang C, Qiao T, Zhou K, Zhang Q, Hou M. The coiling of split dandelion scape induced by cell hygroscopicity. Acta Mech Solida Sin. 2021;34:393–403. https://doi.org/10.1007/s10338-021-00227-x.

    Article  Google Scholar 

  12. Wu Y, Hao X, Xiao R, Lin J, Wu ZL, Yin J, Qian J. Controllable bending of bi-hydrogel strips with differential swelling. Acta Mech Solida Sin. 2019;32:652–62. https://doi.org/10.1007/s10338-019-00106-6.

    Article  Google Scholar 

  13. Wang L, Liu F, Qian J, Wu Z, Xiao R. Multi-responsive PNIPAM-PEGDA hydrogel composite. Soft Matter. 2021;17:10421–7. https://doi.org/10.1039/D1SM01178B.

    Article  Google Scholar 

  14. Antman SS. Nonlinear problems of elasticity. 2nd ed. Berlin: Springer; 2005.

    MATH  Google Scholar 

  15. Renda F, Giorelli M, Calisti M, Cianchetti M, Laschi C. Dynamic model of a multibending soft robot arm driven by cables. IEEE Trans Robot. 2014;30:1109–22.

    Article  Google Scholar 

  16. Rucker DC, Webster RJ. Computing Jacobians and compliance matrices for externally loaded continuum robots. Proc IEEE Int Conf Robot Autom. 2011. https://doi.org/10.1109/icra.2011.5980351.

    Article  Google Scholar 

  17. Meier C, Popp A, Wall WA. Geometrically exact finite element formulations for slender beams: Kirchhoff–Love theory versus Simo–Reissner theory. Arch Comput Methods Eng. 2019;26:163–243. https://doi.org/10.1007/s11831-017-9232-5.

    Article  MathSciNet  Google Scholar 

  18. Simo JC. A finite strain beam formulation. The three-dimensional dynamic problem: part I. Comput Methods Appl Mech Eng. 1985;49:55–70.

    Article  Google Scholar 

  19. Chen W, Wang L. Theoretical modeling and exact solution for extreme bending deformation of hard-magnetic soft beams. J Appl Mech. 2020;87:041002. https://doi.org/10.1115/1.4045716.

    Article  Google Scholar 

  20. Chen W, Wang L, Yan Z, Luo B. Three-dimensional large-deformation model of hard-magnetic soft beams. Compos Struct. 2021;266:113822. https://doi.org/10.1016/j.compstruct.2021.113822.

    Article  Google Scholar 

  21. Simo JC, Vu-Quoc L. A three-dimensional finite-strain rod model. Part II: Computational aspects. Comput Methods Appl Mech Eng. 1986;58:79–116.

    Article  Google Scholar 

  22. Simo JC, Vu-Quoc L. A geometrically-exact rod model incorporating shear and torsion-warping deformation. Int J Solids Struct. 1991;27:371–93. https://doi.org/10.1016/0020-7683(91)90089-X.

    Article  MathSciNet  MATH  Google Scholar 

  23. Crisfield MA, Jelenić G. Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc R Soc Lond Ser Math Phys Eng Sci. 1999;455:1125–47. https://doi.org/10.1098/rspa.1999.0352.

    Article  MathSciNet  MATH  Google Scholar 

  24. Jelenic G, Crisfield MA. Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics, 1999;7825. https://doi.org/10.1016/S0045-7825(98)00249-7.

  25. Ibrahimbegović A, Frey F, Kožar I. Computational aspects of vector-like parametrization of three-dimensional finite rotations. Int J Numer Methods Eng. 1995;38:3653–73.

    Article  MathSciNet  Google Scholar 

  26. Zhang R, Zhong H. A quadrature element formulation of an energy-momentum conserving algorithm for dynamic analysis of geometrically exact beams. Comput Struct. 2016;165:96–106. https://doi.org/10.1016/j.compstruc.2015.12.007.

    Article  Google Scholar 

  27. Bauchau OA, Betsch P, Cardona A, Gerstmayr J, Jonker B, Masarati P, Sonneville V. Validation of flexible multibody dynamics beam formulations using benchmark problems. Multibody Syst Dyn. 2016;37:29–48.

    Article  MathSciNet  Google Scholar 

  28. Duan L, Zhao J. A geometrically exact cross-section deformable thin-walled beam finite element based on generalized beam theory. Comput Struct. 2019;218:32–59. https://doi.org/10.1016/j.compstruc.2019.04.001.

    Article  Google Scholar 

  29. Zupan D, Saje M. Finite-element formulation of geometrically exact three-dimensional beam theories based on interpolation of strain measures. Comput Methods Appl Mech Eng. 2003;192:5209–48.

    Article  MathSciNet  Google Scholar 

  30. Ghosh S, Roy D. Consistent quaternion interpolation for objective finite element approximation of geometrically exact beam. Comput Methods Appl Mech Eng. 2008;198:555–71. https://doi.org/10.1016/j.cma.2008.09.004.

    Article  MathSciNet  MATH  Google Scholar 

  31. Meier C, Popp A, Wall WA. An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods. Comput Methods Appl Mech Eng. 2014;278:445–78. https://doi.org/10.1016/j.cma.2014.05.017.

    Article  MathSciNet  MATH  Google Scholar 

  32. Sonneville V, Cardona A, Brüls O. Geometrically exact beam finite element formulated on the special Euclidean group SE(3). Comput Methods Appl Mech Eng. 2014;268:451–74. https://doi.org/10.1016/j.cma.2013.10.008.

    Article  MathSciNet  MATH  Google Scholar 

  33. Bathe K-J, Bolourchi S. Large displacement analysis of three-dimensional beam structures. Int J Numer Methods Eng. 1979;14:961–86. https://doi.org/10.1002/nme.1620140703.

    Article  MATH  Google Scholar 

  34. Romero I. The interpolation of rotations and its application to finite element models of geometrically exact rods. Comput Mech. 2004;34:121–33.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

H.Y. acknowledges the funding support from the National Natural Science Foundation of China (NSFC Grant No. 12072143). J.L. acknowledges the funding support from the National Natural Science Foundation of China (NSFC Grant No. 12172160). C.C. acknowledges the financial support from the U.S. National Science Foundation (ECCS-2024649).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yu, W., Baghaee, M. et al. Geometrically Exact Finite Element Formulation for Tendon-Driven Continuum Robots. Acta Mech. Solida Sin. 35, 552–570 (2022). https://doi.org/10.1007/s10338-022-00311-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-022-00311-w

Keywords

Navigation