Skip to main content

Advertisement

Log in

Measurement of Transverse Tensile Interfacial Strength of REBCO-Coated Conductors

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

We present a new test method for the accurate measurement of the transverse tensile interfacial strength of rare-earth barium copper oxide (REBCO)-coated conductor (CC) tapes to overcome heavy scattering of data tested using regular test methods. A new composite structure specimen is designed and constructed by solidifying a standard epoxy resin tensile specimen using the three-dimensional printing technology, where a short REBCO CC tape is embedded. The feasibility of the proposed test method is numerically validated through finite element (FE) calculations. Experimental results show that the valid delaminated strength is 2.19–2.51 MPa with the maximum relative error of 7.3%, indicating the elimination of significant scattering in the tested data. By analysing the morphology of the delaminated interfaces and energy-dispersive spectroscopy results, it is discovered that delamination primarily occurs at the interface between the REBCO superconducting layer and the buffer layer and that a small portion of the REBCO and buffer layers peels off. Further error analysis based on the FE method indicates that the tape is more likely to delaminate because of initial defects, whereas the adhesion at the edges of the CC tape due to the redundancy of the epoxy resin increases the resistance of the CC tape to delamination, resulting in a higher testing value than the real one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bruzzone P, Fietz WH, Minervini JV, et al. High temperature superconductors for fusion magnets. Nucl Fusion. 2018;58(10):103001.

    Article  Google Scholar 

  2. Wang YW, Zhang M, Grilli F, et al. Study of the magnetization loss of CORC®cables using a 3D TA formulation. Supercond Sci Technol. 2019;32(2):025003.

    Article  Google Scholar 

  3. Pi W, Liu ZQ, Li GQ, et al. 4D simulation of quench behavior in quasi-isotropic superconducting cable of stacked REBCO tapes considering thermal contact resistance. Supercond Sci Tech. 2020;33(8):084005.

    Article  Google Scholar 

  4. Gupta R, Anerella M, Ghosh A, et al. Hybrid high-field cosine-theta accelerator magnet R&D with second-generation HTS. IEEE Trans Appl Supercond. 2015;25(3):4003704.

    Google Scholar 

  5. Yoon S, Kim J, Lee H, et al. 26 T 35 mm all-GdBa2Cu3O7-x multi-width no-insulation superconducting magnet. Supercond Sci Technol. 2016;29(4):04LT04.

    Article  Google Scholar 

  6. Awaji S, Watanabe K, Oguro H, et al. First performance test of a 25 T cryogen-free superconducting magnet. Supercond Sci Technol. 2017;30(6):065001.

    Article  Google Scholar 

  7. Liu DH, Zhang WW, Yong HD, et al. Numerical analysis of thermal stability and mechanical response in a no-insulation high-temperature superconducting layer-wound coil. Supercond Sci Technol. 2019;32(4):044001.

    Article  MathSciNet  Google Scholar 

  8. Wang YW, Bai HY, Li JW, et al. Electromagnetic modelling using TA formulation for high-temperature superconductor (RE)\(\text{Ba}_{2}\text{ Cu}_{3}\text{ O}_{\rm x}\) high field magnets. High Volt. 2020; 5(2): 218–226.

  9. Hahn S, Kim K, Kim K, et al. 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet. Nature. 2019;570(7762):496–9.

    Article  Google Scholar 

  10. Liu JH, Wang QL, Qin L, et al. World record 32.35 tesla direct-current magnetic field generated with an all-superconducting magnet. Supercond Sci Technol. 2020;33(3):03LT01.

    Article  Google Scholar 

  11. Shin HS, Dedicatoria MJ. Intrinsic strain effect on critical current in Cu-stabilized GdBCO coated conductor tapes with different substrates. Supercond Sci Technol. 2013;26(5):055005.

    Article  Google Scholar 

  12. Ilin K, Yagotintsev KA, Zhou C, et al. Experiments and FE modeling of stress-strain state in ReBCO tape under tensile, torsional and transverse load. Supercond Sci Technol. 2015;28(5):055006.

    Article  Google Scholar 

  13. Zhang Y, Hazelton DW, Kelley R, et al. Stress-strain relationship, critical strain (stress) and irreversible strain (stress) of IBAD-MOCVD-based 2G HTS wires under uniaxial tension. IEEE Trans Appl Supercond. 2016;26(4):8400406.

    Google Scholar 

  14. Osamura K, Machiya S, Hampshire DP. Mechanism for the uniaxial strain dependence of the critical current in practical REBCO tapes. Supercond Sci Technol. 2016;29(6):065019.

    Article  Google Scholar 

  15. Gao PF, Chan WK, Wang XZ, et al. Stress, strain and electromechanical analyses of (RE) Ba2Cu3Ox conductors using three-dimensional/two-dimensional mixed-dimensional modeling: fabrication, cooling and tensile behavior. Supercond Sci Technol. 2020;33(4):044015.

    Article  Google Scholar 

  16. Gao PF, Xin CJ, Guan MZ, et al. Strain effect on critical current degradation in bi-based superconducting tapes with different deformation modes. IEEE Trans Appl Supercond. 2016;26(4):8401605.

    Google Scholar 

  17. Osamura K, Machiya S, Kawasaki T, et al. Mechanical–electromagnetic property of stainless sheet laminated BSCCO-2223 wires. Mater Res Express. 2018;6(2):026001.

    Article  Google Scholar 

  18. Gao PF, Wang XZ, Zhou YH. Strain dependence of critical current and self-field AC loss in Bi-2223/Ag multi-filamentary HTS tapes: a general predictive model. Supercond Sci Technol. 2019;32(3):034003.

    Article  Google Scholar 

  19. Takematsu T, Hu R, Takao T, et al. Degradation of the performance of a YBCO-coated conductor double pancake coil due to epoxy impregnation. Physica C. 2010;470(17–18):674–7.

    Article  Google Scholar 

  20. Matsuda T, Okamura T, Hamada M, et al. Degradation of the performance of an epoxy-impregnated REBCO solenoid due to electromagnetic forces. Cryogenics. 2018;90:47–51.

    Article  Google Scholar 

  21. van der Laan DC, Ekin JW, Clickner CC, et al. Delamination strength of YBCO coated conductors under transverse tensile stress. Supercond Sci Technol. 2007;20(8):765–70.

    Article  Google Scholar 

  22. Majkic G, Galstyan E, Zhang YF, et al. Investigation of delamination mechanisms in IBAD-MOCVD REBCO coated conductors. IEEE Trans Appl Supercond. 2013;23(3):6600205.

    Article  Google Scholar 

  23. Gorospe A, Nisay A, Dizon JR, et al. Delamination behaviour of GdBCO coated conductor tapes under transverse tension. Physica C. 2013;494:163–7.

    Article  Google Scholar 

  24. Shin HS, Gorospe A. Characterization of transverse tensile stress response of critical current and delamination behaviour in GdBCO coated conductor tapes by anvil test. Supercond Sci Technol. 2013;27(2):025001.

    Article  Google Scholar 

  25. Dizon JRC, Gorospe AB, Shin HS. Numerical analysis of stress distribution in Cu-stabilized GdBCO CC tapes during anvil tests for the evaluation of transverse delamination strength. Supercond Sci Technol. 2014;27(5):055023.

    Article  Google Scholar 

  26. Liu W, Zhang XY, Zhou J, et al. Delamination strength of the soldered joint in YBCO coated conductors and its enhancement. IEEE Trans Appl Supercond. 2015;25(4):6606109.

    Google Scholar 

  27. Zhang XY, Sun C, Liu C, et al. A standardized measurement method and data analysis for the delamination strengths of YBCO coated conductors. Supercond Sci Technol. 2020;33(3):035005.

    Article  Google Scholar 

  28. Zhang Y, Hazelton DW, Knoll AR, et al. Adhesion strength study of IBAD-MOCVD-based 2G HTS wire using a peel test. Physica C. 2012;473:41–7.

    Article  Google Scholar 

  29. Kesgin I, Khatri N, Liu YH, et al. Influence of superconductor film composition on adhesion strength of coated conductors. Supercond Sci Technol. 2015;29(1):015003.

    Article  Google Scholar 

  30. Yanagisawa Y, Nakagome H, Takematsu T, et al. Remarkable weakness against cleavage stress for YBCO-coated conductors and its effect on the YBCO coil performance. Physica C: Supercond Appl. 2011;471(15–16):480–5.

    Article  Google Scholar 

  31. Liu LY, Zhu YP, Yang XS, et al. Delamination properties of YBCO tapes under shear stress along the width direction. IEEE Trans Appl Supercond. 2016;26(6):6603406.

    Google Scholar 

  32. Gao PF, Chan WK, Wang XZ, et al. Mixed-dimensional modeling of delamination in rare earth-barium-copper-oxide coated conductors composed of laminated high-aspect-ratio thin films. Supercond Sci Technol. 2018;31(7):074004.

    Article  Google Scholar 

  33. Camanho PP, Davila CG, de Moura MF. Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater. 2003;37(16):1415–38.

    Article  Google Scholar 

  34. Duan YJ, Ta WR, Gao YW. Numerical models of delamination behavior in 2G HTS tapes under transverse tension and peel. Physica C. 2018;545:26–37.

    Article  Google Scholar 

  35. Peng XB, Yong HD, Zhou YH. Finite element modeling of single-lap joint between GdBa2Cu3O7-x-coated conductors using cohesive elements. Physica C. 2020;570:1353600.

    Article  Google Scholar 

  36. Gao PF, Duan H, Wang XZ, Zhou YH. Effect of thermal mismatch stress and electromagnetic loads on delamination in REBCO coated conductors. In: 2019 International Conference on Magnet Technology (MT26), Vancouver, Canada, 22–27 September.

  37. Duan YJ, Gao YW. Delamination and current-carrying degradation behavior of epoxy-impregnated superconducting coil winding with 2G HTS tape caused by thermal stress. Aip Adv. 2020;10(2):025320.

    Article  Google Scholar 

  38. Gao PF, Zhang HY, Wang XZ. Numerical investigation on delamination induced by thermal mismatch in epoxy impregnated REBCO pancake coils. IEEE Trans Appl Supercond. 2020;30(4):4603005.

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the supports by the National Natural Science Foundation of China (11902129, 11932008), the China Postdoctoral Science Foundation (2019T120963), and the Fundamental Research Funds for the Central Universities (lzujbky-2020-pd03, lzujbky-2021-kb06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingzhe Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Geng, X., Zhang, H. et al. Measurement of Transverse Tensile Interfacial Strength of REBCO-Coated Conductors. Acta Mech. Solida Sin. 35, 40–50 (2022). https://doi.org/10.1007/s10338-021-00283-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00283-3

Keywords

Navigation