Skip to main content
Log in

Effect of Stress-Dependent Thermal Conductivity on Thermo-Mechanical Coupling Behavior in GaN-Based Nanofilm Under Pulse Heat Source

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The thermal properties of a nanostructured semiconductor are affected by multi-physical fields, such as stress and electromagnetic fields, causing changes in temperature and strain distributions. In this work, the influence of stress-dependent thermal conductivity on the heat transfer behavior of a GaN-based nanofilm is investigated. The finite element method is adopted to simulate the temperature distribution in a prestressed nanofilm under heat pulses. Numerical results demonstrate the effect of stress field on the thermal conductivity of GaN-based nanofilm, namely, the prestress and the thermal stress lead to a change in the heat transfer behavior in the nanofilm. Under the same heat source, the peak temperature of the film with stress-dependent thermal conductivity is significantly lower than that of the film with a constant thermal conductivity and the maximum temperature difference can reach 8.2 K. These results could be useful for designing GaN-based semiconductor devices with higher reliability under multi-physical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yanagihara M, Uemoto Y, Ueda T, Tanaka T, Ueda D. Recent advances in GaN transistors for future emerging applications. Phys Status Solidi A. 2009;206(6):1221–7.

    Google Scholar 

  2. Polyakov AY, Smirnov NB, Govorkov AV, Markov AV, Kozhukhova EA, Gazizov IM, Kolin NG, Merkurisov DI, Boiko VM, Korulin AV, Zalyetin VM, Pearton SJ, Lee IH, Dabiran AM, Chow PP. Alpha particle detection with GaN Schottky diodes. J Appl Phys. 2009;106(10):2233–73.

    Google Scholar 

  3. Pearton SJ, Ren F, Wang YL, Chu BH, Chen KH, Chang CY, Lim W, Lin JS, Norton DP. Recent advances in wide bandgap semiconductor biological and gas sensors. Prog Mater Sci. 2010;55(1):1–59.

    Google Scholar 

  4. Bulgrin KE, Ju YS, Carman GP, Lavine AS. An Investigation of a Tunable Magnetomechanical Thermal Switch. ASME J Heat Transf. 2013;133:101401.

    Google Scholar 

  5. Lu M, Zhang GG, Fu K, Yu GH, Su D, Hu JF. Gallium Nitride Schottky betavoltaic nuclear batteries. Energy Convers Manage. 2011;52(4):1955–8.

    Google Scholar 

  6. Pengelly RS, Wood SM, Milligan JW, Sheppard ST, Pribble WL. A review of GaN on SiC high electron-mobility power transistors and MMICs. IEEE Trans Microw Theory Technol. 2012;60(6):1764–83.

    Google Scholar 

  7. Wang JH, Mulligan P, Brillson L, Cao LR. Review of using gallium nitride for ionizing radiation detection. Appl Phys Rev. 2015;2(3):031102.

    Google Scholar 

  8. Lee FCY, Li Q, Fei C, Yang YC. Applications of GaN power devices. In: Book Wide Bandgap Semiconductor Power Devices. Elsevier. 2019. vol. 8, pp. 301–43.

  9. Sharma P, Wheeler LT. Size-dependent elastic state of ellipsoidal nano-inclusions incorporating surface/interface tension. J Appl Mech. 2007;74:447–54.

    MathSciNet  MATH  Google Scholar 

  10. Sun CQ. Thermo-mechanical behavior of low-dimensional systems: the local bond average approach. Prog Mater Sci. 2009;54(2):179–307.

    Google Scholar 

  11. Zhu LL, Zheng XJ. Modification of the elastic properties of nanostructures with surface charges in applied electric fields. Eur J Mech A-Solids. 2010;29:337–47.

    Google Scholar 

  12. Wang JX, Huang ZP, Duan HL, Yu SW, Feng XQ, Wang GF, Zhang WX, Wang TJ. Surface stress effect in mechanics of nanostructured materials. Acta Mech Solida Sinica. 2011;24:52–82.

    Google Scholar 

  13. Javili A, Mcbride A, Steinmann P. Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. a unifying review. Appl Mech Rev. 2013;65(1):010802.

    Google Scholar 

  14. Zhu LL, Ruan HH. Influence of prestress fields on the phonon thermal conductivity of GaN nanostructures. ASME J Heat Transf. 2014;136:102402.

    Google Scholar 

  15. Huang ZW, Wang Y, Zhu J, Yu JR, Hu ZM. Surface engineering of nanosilica for vitrimer composites. Compos Sci Technol. 2018;154:18–27.

    Google Scholar 

  16. Morteza K, Shahidi AR. A general comparison the surface layer degree on the out-of-phase and in-phase vibration behavior of a skew double-layer magneto-electro-thermo-elastic nanoplate. Appl Phys A. 2019;125:106.

    Google Scholar 

  17. Avenas Y, Dupont L, Khatir Z. Temperature measurement of power semiconductor devices by thermo-sensitive electrical parameters-a review. IEEE Trans Power Electron. 2012;27(6):3081–92.

    Google Scholar 

  18. Norris PM, Le NQ, Baker CH. Tuning phonon transport: from interfaces to nanostructures. ASME J Heat Transf. 2013;135:061604.

    Google Scholar 

  19. Chou PC, Cheng S, Chen SH. Evaluation of thermal performance of all-gan power module in parallel operation. Appl Therm Eng. 2014;70(1):593–9.

    Google Scholar 

  20. Jones JP, Heller E, Dorsey D, Graham S. Transient stress characterization of AlGaN/GaN HEMTS due to electrical and thermal effects. Microelectron Reliab. 2015;55(12):2634–9.

    Google Scholar 

  21. Joglekar S, Lian C, Baskaran R, Zhang Y, Palacios T, Hanson A. Finite element analysis of fabrication- and operation-induced mechanical stress in AlGaN/GaN transistors. IEEE Trans Semicond Manuf. 2016;29(4):349–54.

    Google Scholar 

  22. Li SC, Chen WC, Luo YD, Hu J, Guo PQ, Ye JC, Kang K, Chen HS, Li EP, Yin WY. Fully coupled multiphysics simulation of crosstalk effect in bipolar resistive random access memory. IEEE Trans Electron Devices. 2017;64(9):3647–53.

    Google Scholar 

  23. Oh SK, Lundh JS, Shervin S, Chatterjee B, Lee DK, Choi S, Kwak JS, Ryou JH. Thermal management and characterization of high-power wide-bandgap semiconductor electronic and photonic devices in automotive applications. J Electron Packing. 2019;141:020801.

    Google Scholar 

  24. Souto J, Pura JL, Jimenez J. Thermomechanical issues of high power laser diode catastrophic optical damage. J Phys D Appl Phys. 2019;52:343002.

    Google Scholar 

  25. Calame JP, Myers RE, Wood FN, Binari SC. Simulations of direct-die-attached microchannel coolers for the thermal management of GaN-on-SiC microwave amplifiers. IEEE Trans Compon Packag Technol. 2005;28(4):797–809.

    Google Scholar 

  26. Bykhovski A, Gelmont B, Shur M. The influence of the strain-induced electric field on the charge distribution in GaN-AlN-GaN structure. J Appl Phys. 1993;74(11):6734–9.

    Google Scholar 

  27. Rivera C. Effects of electrostatic force on piezoelectric materials under high electric field: Impact on GaN-based nanoscale structures. J Appl Phys. 2011;109(1):013513.

    Google Scholar 

  28. Wang XP, Yin WY, He S. Multiphysics characterization of transient electrothermomechanical responses of through-silicon vias applied with a periodic voltage pulse. IEEE Trans Electron Devices. 2010;57(6):1382–9.

    Google Scholar 

  29. Ancona MG, Binari SC, Meyer DJ. Fully coupled thermoelectromechanical analysis of GaN high electron mobility transistor degradation. J Appl Phys. 2012;111(7):074504.

    Google Scholar 

  30. Zhang R, Zhao W, Yin WY. Investigation on thermo-mechanical responses in high power multi-finger AlGaN/GaN HEMTs. Microelectron Reliab. 2014;54(3):575–81.

    Google Scholar 

  31. Zhang R, Zhao WS, Yin WY, Zhao ZG, Zhou HJ. Impacts of diamond heat spreader on the thermo-mechanical characteristics of high-power AlGaN/GaN HEMTs. Diamond Relat Mater. 2015;52:25–31.

    Google Scholar 

  32. Abramson AR, Tien CL, Majumdar A. Interface and strain effects on the thermal conductivity of heterostructures: a molecular dynamics study. ASME J Heat Transf. 2002;124(5):963–70.

    Google Scholar 

  33. Picu RC, Borca-Tasciuc T, Pavel MC. Strain and size effects on heat transport in nanostructures. J Appl Phys. 2003;93:3535–9.

    Google Scholar 

  34. Zhu LL, Zheng XJ. Modification of the phonon thermal conductivity in spatially confined semiconductor nanofilms under stress fields. Europhys Lett. 2009;88:36003.

    Google Scholar 

  35. Li XB, Maute K, Dunn ML, Yang RG. Strain effects on the thermal conductivity of nanostructures. Phys Rev B. 2010;81:245318.

    Google Scholar 

  36. Jung K, Cho M, Zhou M. Strain dependence of thermal conductivity of [0001]-oriented gan nanowires. Appl Phys Lett. 2011;98:041909.

    Google Scholar 

  37. Alam MT, Manoharan MP, Haque MA, Muratore C, Voevodin A. Influence of strain on thermal conductivity of silicon nitride thin films. J Micromech Microeng. 2012;22:045001.

    Google Scholar 

  38. Luo HN, Zhu LL. Effects of surface stress on the phonon properties in GaN nanofilms. ASME J Appl Mech. 2015;82:111002.

    Google Scholar 

  39. Zhu LL, Luo HN. Phonon properties and thermal conductivity of GaN nanofilm under prestress and surface/interface stress. J Alloys Compd. 2016;685:619–25.

    Google Scholar 

  40. Wang JC, Zhu LL, Yin WY. Effects of heterogeneity and prestress field on phonon properties of semiconductor nanofilms. Comput Mater Sci. 2018;145:14–23.

    Google Scholar 

  41. Zhu LL, Tang XY, Wang JC, Hou Y. Modeling phonon thermal conductivity in spatially confined GaN nanofilms under stress fields and phonon surface scattering. AIP Adv. 2019;9:015024.

    Google Scholar 

  42. Tang XY, Wang JC, Zhu LL, Yin WY. Simulating stress-tunable phonon and thermal properties in heterostructgured AlN/GaN/AlN-nanofilms. Mater Res Exp. 2019;6:015018.

    Google Scholar 

  43. Zhang SY, Tang XY, Ruan HH, Zhu LL. Effects of surface/interface stress on phonon properties and thermal conductivity in AlN/GaN/AlN heterostructural nanofilms. Appl Phys A. 2019;125:732.

    Google Scholar 

  44. Bannov N, Aristov V, Mitin V. Electron relaxation times due to the deformation-potential interaction of electrons with confined acoustic phonons in a free-standing quantum well. Phys Rev B. 1995;51:9930–42.

    Google Scholar 

  45. Balandin A, Wang KL. Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys Rev B. 1998;58:1544–9.

    Google Scholar 

  46. Zou J, Lange X, Richardson C. Lattice thermal conductivity of nanoscale AlN/GaN/AlN heterostructures: effects of partial phonon spatial confinement. J Appl Phys. 2006;100:104309.

    Google Scholar 

  47. Balandin AA, Pokatilov EP, Nika DL. Phonon engineering in hetero- and nanostructures. J Nanoelectron Optoelectron. 2007;2:140–70.

    Google Scholar 

  48. Wedler G, Walz J, Hesjedal T, Chilla E, Koch R. Stress and relief of misfit strain of Ge/Si(001). Phys Rev Lett. 1998;80:2382.

    Google Scholar 

  49. Chang CL, Jaob JY, Hoa WY, Wang DY. Influence of bi-layer period thickness on the residual stress, mechanical and tribological properties of nanolayered TiAlN/CrN multi-layer coatings. Vacuum. 2007;81:604–9.

    Google Scholar 

  50. Sichel EK, Pankove JI. Thermal conductivity of GaN, 25–360 K. J Phys Chem Solids. 1977;38:330.

    Google Scholar 

  51. Zou J. Lattice thermal conductivity of freestanding gallium nitride nanowires. J Appl Phys. 2010;108:034324.

    Google Scholar 

  52. AlShaikhi A, Barman S, Srivastava GP. Theory of the lattice thermal conductivity in bulk and films of GaN. Phys Rev B. 2010;81:195320.

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant Nos. 11772294, 11621062) and the Fundamental Research Funds for the Central Universities (Grant No. 2017QNA4031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linli Zhu or Haihui Ruan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Tang, X., Zhu, L. et al. Effect of Stress-Dependent Thermal Conductivity on Thermo-Mechanical Coupling Behavior in GaN-Based Nanofilm Under Pulse Heat Source. Acta Mech. Solida Sin. 34, 27–39 (2021). https://doi.org/10.1007/s10338-020-00182-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-020-00182-z

Keywords

Navigation