Skip to main content
Log in

Inclusion Size Effect on Mechanical Properties of Particle Hydrogel Composite

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Particle hydrogel composite (PHC) combines the characteristics of at least two materials and has potential applications in many fields. Different functions require the particle size to range from nanometer to millimeter, which has a noticeable effect on the mechanical properties of the hydrogel composites. In this paper, the mechanical properties of silica-inlaid PAAM hydrogel are measured with various particle diameters from 75 nm to \(50\, \upmu \hbox {m}\). Experimental results show no obvious size effect on the mechanical properties of PHC when the particle diameter falls in micron scale. However, as the particle size decreases to nanoscale, the modulus of the PHC begins to increase rapidly. The size-irrelevant moduli and stress fields of PHCs with random and uniform particle distributions under different loading conditions are obtained based on the finite element method. Meanwhile, the toughening mechanism and the failure of the PHC are investigated. The size-irrelevant modulus of the PHC is also predicted by the equivalent inclusion theory. Finally, the interaction between the hydrogel polymer chains and the particles is described from the microscopic point of view, requiring the nanoscale size-dependent theory and new experimental approach to further explore the mechanical properties of PHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thoniyot P, Tan MJ, Karim AA, et al. Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv Sci. 2015;2(1–2):1400010.

    Article  Google Scholar 

  2. Klein A, Whitten PG, Resch K, et al. Nanocomposite hydrogels: fracture toughness and energy dissipation mechanisms. J Polym Sci Part B Polym Phys. 2015;53(24):1763–73.

    Article  Google Scholar 

  3. Sun J, Zhao X, Illeperuma WRK, et al. Highly stretchable and tough hydrogels. Nature. 2012;489(7414):133–6.

    Article  Google Scholar 

  4. Guo J, Liu X, Jiang N, et al. Highly stretchable, strain sensing hydrogel optical fibers. Adv Mater. 2016;28(46):10244–9.

    Article  Google Scholar 

  5. Lin S, Yuk H, Zhang T, et al. Stretchable hydrogel electronics and devices. Adv Mater. 2016;28(22):4497–505.

    Article  Google Scholar 

  6. Yang CH, Chen B, Lu JJ, et al. Ionic cable. Extreme Mech. Lett. 2015;3:59–65.

    Article  Google Scholar 

  7. Pathak AK, Singh VK. A wide range and highly sensitive optical fiber pH sensor using polyacrylamide hydrogel. Opt Fiber Technol. 2017;39:43–8.

    Article  Google Scholar 

  8. Ionov L. Biomimetic hydrogel-based actuating systems. Adv Funct Mater. 2013;23(36):4555–70.

    Article  Google Scholar 

  9. Tavakoli J, Tang Y. Hydrogel based sensors for biomedical applications: an updated review. Polymers. 2017;9(12):364.

    Article  Google Scholar 

  10. Culver HR, Clegg JR, Peppas NA. Analyte-responsive hydrogels: intelligent materials for biosensing and drug delivery. Acc Chem Res. 2017;50(2):170–8.

    Article  Google Scholar 

  11. Tang J, Tong Z, Xia Y, et al. Super tough magnetic hydrogels for remotely triggered shape morphing. J Mater Chem B. 2018;6:18.

    Google Scholar 

  12. Chin SY, Poh YC, Kohler AC, et al. Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices. Sci Robot. 2017;2:6451.

    Article  Google Scholar 

  13. Sun Y, Wang Y, Yao J, et al. Highly magnetic sensitivity of polymer nanocomposite hydrogels based on magnetic nanoparticles. Compos Sci Technol. 2017;141:40–7.

    Article  Google Scholar 

  14. Dionigi C, Piñeiro Y, Riminucci A, et al. Regulating the thermal response of PNIPAM hydrogels by controlling the adsorption of magnetite nanoparticles. Appl Phys A. 2014;114(2):585–90.

    Article  Google Scholar 

  15. Cai Z, Kwak DH, Punihaole D, et al. A photonic crystal protein hydrogel sensor for Candida Albicans. Angew Chem Int Ed. 2015;54(44):13036–40.

    Article  Google Scholar 

  16. Yang CH, Zhou S, Shian S, et al. Organic liquid-crystal devices based on ionic conductors. Mater Horiz. 2017;4(6):1102–9.

    Article  Google Scholar 

  17. Sershen SR, Westcott SL, Halas NJ, et al. Independent optically addressable nanoparticle-polymer optomechanical composites. Appl Phys Lett. 2002;80(24):4609–11.

    Article  Google Scholar 

  18. Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond. 1957;241:376–96.

    Article  MathSciNet  MATH  Google Scholar 

  19. Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973;21(5):571–4.

    Article  Google Scholar 

  20. Wang QM, Gao ZM. A constitutive model of nanocomposite hydrogels with nanoparticle crosslinkers. J Mech Phys Solids. 2016;94:127–47.

    Article  MathSciNet  Google Scholar 

  21. Cho J, Joshi MS, Sun CT. Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles. Compos Sci Technol. 2006;66(13):1941–52.

    Article  Google Scholar 

  22. Moloney AC, Kausch HH, Kaiser T, et al. Parameters determining the strength and toughness of particulate filled epoxide resins. J Mater Sci. 1987;22(2):381–93.

    Article  Google Scholar 

  23. Xia Z, Zhou C, Yong Q, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. Int J Solids Struct. 2006;43(2):266–78.

    Article  MathSciNet  MATH  Google Scholar 

  24. Xia Z, Zhang Y, Ellyin F. A unified periodical boundary conditions for representative volume elements of composites and applications. Int J Solids Struct. 2003;40(8):1907–21.

    Article  MATH  Google Scholar 

  25. Nian G, Shan Y, Xu Q, et al. Effects of hollow particle shape and distribution on the elastic properties of syntactic foams: 3D computational modeling. Comput Mater Sci. 2014;95:106–12.

    Article  Google Scholar 

  26. Jordan J, Jacob KI, Tannenbaum R, et al. Experimental trends in polymer nanocomposites—a review. Mater Sci Eng A. 2005;393(1–2):1–11.

    Article  Google Scholar 

  27. Rose S, Prevoteau A, Elzière P, et al. Nanoparticle solutions as adhesives for gels and biological tissues. Nature. 2014;505(7483):382–5.

    Article  Google Scholar 

  28. Netz RR, Andelman D. Neutral and charged polymers at interfaces. Phys Rep. 2003;380(1–2):1–95.

    Article  MATH  Google Scholar 

  29. Haider H, Yang CH, Zheng WJ, et al. Exceptionally tough and notch-insensitive magnetic hydrogels. Soft Matter. 2015;11(42):8253–61.

    Article  Google Scholar 

  30. Tang J, Xu G, Sun Y, et al. Dissipative properties and chain evolution of highly strained nanocomposite hydrogel. J Appl Phys. 2014;116(24):244901.

    Article  Google Scholar 

  31. Rubinstein M, Colby RH. Polymer-physics. Oxford: Oxford University Press; 2003.

    Google Scholar 

  32. Shen GL, Hu GK. Mechanics of composite materials. 1st ed. Beijing: Tsinghua University Press; 2010.

    Google Scholar 

  33. Xiang Y, Zhong D, Wang P, et al. A general constitutive model of soft elastomers. J Mech Phys Solids. 2018;117:110–22.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoxing Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Qu, S. Inclusion Size Effect on Mechanical Properties of Particle Hydrogel Composite. Acta Mech. Solida Sin. 32, 643–651 (2019). https://doi.org/10.1007/s10338-019-00093-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-019-00093-8

Keywords

Navigation