Skip to main content
Log in

Coupled Bending–Bending–Axial–Torsional Vibrations of Rotating Blades

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

In this paper, the coupled bending–bending–axial–torsional free vibrations of rotating blades are investigated based on the Euler–Bernoulli beam model. The coupled partial differential equations governing flapwise, edgewise, axial and torsional motions are derived by the Hamilton’s principle, wherein three types of velocity-dependent terms, namely static centrifugal terms, dynamic centrifugal terms and gyroscopic coupling terms, are focused. The ordinary differential equations are acquired by the Galerkin truncation, and the natural frequencies in all directions and complex mode shapes of the rotating blades are analyzed in detail. It is revealed that the three types of velocity-dependent terms have different effects on the natural frequencies. The natural frequencies are noticeably dependent on the rotating speed and preset angle, except for the axial vibration, which is almost immune to the preset angle. The complex modal motions are displayed by a series of positions of the central line and free-end cross section for different time instants, showing the coupled vibrations among different directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hodges DH. A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams. Int J Solids Struct. 1990;26:1253–73.

    Article  MathSciNet  MATH  Google Scholar 

  2. Cesnik CES, Shin SJ, Wilbur ML. Dynamic response of active twist rotor blades. Smart Mater Struct. 2001;10:62–76.

    Article  Google Scholar 

  3. Bendiksen OO, Friedmann PP. The effect of bending-torsion coupling on fan and compressor blade flutter. ASME J Eng Power. 1982;104:617–23.

    Article  Google Scholar 

  4. Cesnik CES, Hodges DH. VABS: A new concept for composite rotor blade cross-sectional modeling. J Am Helicopter Soc. 1997;42:27–38.

    Article  Google Scholar 

  5. Wright AD, Smith CE, Thresher RW, Wang JLC. Vibration modes of centrifugally stiffened beams. ASME J Appl Mech. 1982;49:197–202.

    Article  MATH  Google Scholar 

  6. Naguleswaran S. Lateral vibration of a centrifugally tensioned uniform Euler–Bernoulli beam. J Sound Vib. 1994;176:613–24.

    Article  MATH  Google Scholar 

  7. Du H, Lim MK, Liew KM. A power-series solution for vibration of a rotating Timoshenko beam. J Sound Vib. 1994;175:505–23.

    Article  MATH  Google Scholar 

  8. Sanchezhubert J, Sanchezpalencia E. Coupling of bending-torsion-traction for anisotropic beams with heterogeneous section. Cr Acad Sci Ii. 1991;312:337–44.

    Google Scholar 

  9. Banerjee JR. Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method. J Sound Vib. 2000;233:857–75.

    Article  MATH  Google Scholar 

  10. Chen WR, Keer LM. Transverse vibrations of a rotating twisted Timoshenko beam under axial loading. ASME J Vib Acoust. 1993;115:285–94.

    Article  Google Scholar 

  11. Genta G, Tonoli A. A harmonic finite element for the analysis of flexural, torsional and axial rotordynamic behavior of blade arrays. J Sound Vib. 1997;207:693–720.

    Article  Google Scholar 

  12. Sivaneri NT, Chopra I. Dynamic stability of a rotor blade using finite-element analysis. AIAA J. 1982;20:716–23.

    Article  MATH  Google Scholar 

  13. Yang XD, Liu M, Qian YJ, Yang S, Zhang W. Linear and nonlinear modal analysis of the axially moving continua based on the invariant manifold method. Acta Mech. 2017;228:465–74.

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin SC, Hsiao KM. Vibration analysis of a rotating Timoshenko beam. J Sound Vib. 2001;240:303–22.

    Article  MATH  Google Scholar 

  15. Lee SY, Sheu JJ. Free vibrations of a rotating inclined beam. ASME J Appl Mech. 2007;74:406–14.

    Article  MATH  Google Scholar 

  16. Banerjee JR, Kennedy D. Dynamic stiffness method for inplane free vibration of rotating beams including Coriolis effects. J Sound Vib. 2014;333:7299–312.

    Article  Google Scholar 

  17. Chung J, Yoo HH. Dynamic analysis of a rotating cantilever beam by using the finite element method. J Sound Vib. 2002;249:147–64.

    Article  Google Scholar 

  18. Kim H, Yoo HH, Chung J. Dynamic model for free vibration and response analysis of rotating beams. J Sound Vib. 2013;332:5917–28.

    Article  Google Scholar 

  19. Pesheck E, Pierre C, Shaw SW. Accurate reduced-order models for a simple rotor blade model using nonlinear normal modes. Math Comput Model. 2001;33:1085–97.

    Article  MATH  Google Scholar 

  20. Huang CL, Lin WY, Hsiao KM. Free vibration analysis of rotating Euler beams at high angular velocity. Comput Struct. 2010;88:991–1001.

    Article  Google Scholar 

  21. Huo YL, Wang ZM. Dynamic analysis of a rotating double-tapered cantilever Timoshenko beam. Arch Appl Mech. 2016;86:1147–61.

    Article  MATH  Google Scholar 

  22. Li L, Zhang X, Li Y. Analysis of coupled vibration characteristics of wind turbine blade based on Green’s functions. Acta Mech Solida Sin. 2016;29:620–30.

    Article  Google Scholar 

  23. Invernizzi D, Dozio L. A fully consistent linearized model for vibration analysis of rotating beams in the framework of geometrically exact theory. J Sound Vib. 2016;370:351–71.

    Article  Google Scholar 

  24. Kambampati S, Ganguli R. Nonrotating beams isospectral to tapered rotating beams. AIAA J. 2016;54:750–7.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Project Nos. 11672007, 11672189), the Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University (VCAME201601) and Beijing Natural Science Foundation (Project No. 3172003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Liang or Xiao-Dong Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, F., Li, Z., Yang, XD. et al. Coupled Bending–Bending–Axial–Torsional Vibrations of Rotating Blades. Acta Mech. Solida Sin. 32, 326–338 (2019). https://doi.org/10.1007/s10338-019-00075-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-019-00075-w

Keywords

Navigation