Skip to main content

Advertisement

Log in

Fatigue Crack Growth in Cold-Rolled and Annealed Polycrystalline Superelastic NiTi Alloys

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The fatigue crack growth in cold-rolled (CR) and annealed (AN) polycrystalline superelastic NiTi shape memory alloys under cyclic stressing are investigated. The fatigue crack growth morphologies of compact tension specimens are recorded. Experimental results show that the main cracks of the AN specimens grow along the original crack plane, while the crack paths of the CR specimens orient at 18\(^{o}\) angle to the original horizontal crack plane. The latter is due to the strong anisotropy of elastic modulus and hardness after the cold rolling. Besides, the fatigue crack growth rates of the AN specimens in the regime of \(\Delta K=4~\hbox {MPa}\sqrt{\mathrm{m}}\sim 9~\hbox {MPa}\sqrt{\mathrm{m}}\) are lower than those of the CR ones. The AN specimens have higher fatigue crack growth resistance than the CR specimens due to the stronger shielding mechanism caused by plastic deformation and reduced anisotropy by annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mohd Jani J, Leary M, Subic A, Gibson MA. A review of shape memory alloy research, applications and opportunities. Mater Des. 2014;56:1078–113.

    Article  Google Scholar 

  2. Duerig T, Pelton A, Stöckel D. An overview of nitinol medical applications. Mater Sci Eng A-Struct. 1999;273–275:149–60.

    Article  Google Scholar 

  3. Schaffer JE. Structure–property relationships in conventional and nanocrystalline NiTi intermetallic alloy wire. J Mater Eng Perform. 2009;18(5–6):582–7.

    Article  Google Scholar 

  4. Delville R, Malard B, Pilch J, Sittner P, Schryvers D. Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni-Ti wires. Int J Plast. 2011;27(2):282–97.

    Article  Google Scholar 

  5. Ahadi A, Sun Q. Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi. Acta Mater. 2014;76:186–97.

    Article  Google Scholar 

  6. Suresh S. Fatigue of materials. 2nd ed. Cambridge: Cambridge University Press; 1998.

    Book  Google Scholar 

  7. Yin H, He Y, Moumni Z, Sun Q. Effects of grain size on tensile fatigue life of nanostructured NiTi shape memory alloy. Int J Fatigue. 2016;88:166–77.

    Article  Google Scholar 

  8. Ahadi A, Sun Q. Grain size dependence of fracture toughness and crack-growth resistance of superelastic NiTi. Scr Mater. 2016;113:171–5.

    Article  Google Scholar 

  9. Ritchie RO. The conflicts between strength and toughness. Nat Mater. 2011;10(11):817–22.

    Article  Google Scholar 

  10. Mckelvey AL, Ritchie RO. Fatigue-crack growth behavior in the superelastic and shape-memory alloy nitinol. Metall Mater Trans A. 2001;32(3):731–43.

    Article  Google Scholar 

  11. Moumni Z, Zaki W, Maitournam H. Cyclic behavior and energy approach to the fatigue of shape memory alloys. J Mech Mater Struct. 2009;4(4):395–411.

    Article  Google Scholar 

  12. Hanlon T. Grain size effects on the fatigue response of nanocrystalline metals. Scr Mater. 2003;49(7):675–80.

    Article  Google Scholar 

  13. Li Y, Li JY, Liu M, Ren YY, Chen F, Yao GC. Evolution of microstructure and property of NiTi alloy induced by cold rolling. J Alloys Compd. 2015;653:156–61.

    Article  Google Scholar 

  14. Ahadi A, Matsushita Y, Sawaguchi T, Sun QP, Tsuchiya K. Origin of zero and negative thermal expansion in severely-deformed superelastic NiTi alloy. Acta Mater. 2017;124:79–92.

    Article  Google Scholar 

  15. LePage WS, Ahadi A, Lenthe WC, Sun Q-P, Pollock TM, Shaw JA. Grain size effects on NiTi shape memory alloy fatigue crack growth. J Mater Res. 2017;33(02):91–107.

    Article  Google Scholar 

  16. Gao S, Yi S. Experimental study on the anisotropic behavior of textured NiTi pseudoelastic shape memory alloys. Mater Sci Eng A-Struct. 2003;362(1):107–11.

    Article  Google Scholar 

  17. Robertson SW, Ritchie RO. In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: a basis for defining the effect of crack-like defects. Biomaterials. 2007;28(4):700–9.

    Article  Google Scholar 

  18. Otsuka K, Sawamura T, Shimizu K. Crystal structure and internal defects of equiatomic TiNi martensite. Phys Status Solidi. 1971;5(2):457–70.

    Article  Google Scholar 

  19. Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(6):1564–83.

    Article  Google Scholar 

  20. Nye JF. Physical properties of crystals: their representation by tensors and matrices. Oxford: Oxford university press; 1985.

    MATH  Google Scholar 

  21. Hammond C. Book review: The basics of crystallography and diffraction (2nd edn). Meas Sci Technol (2002);13(2):232.

  22. Prokoshkin S, Brailovski V, Dubinskiy S, Inaekyan K, Kreitcberg A. Gradation of nanostructures in cold-rolled and annealed Ti-Ni shape memory alloys. Shape Mem. Superelast. 2016;2(1):12–7.

    Article  Google Scholar 

  23. Kulkarni AV. Transformation behaviour and unusual twinning in a NiTi shape memory alloy ausformed using equal channel angular extrusion. Philos. Mag. 2005;85(16):1729–45.

    Article  Google Scholar 

  24. Ahadi A, Sun Q. Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi—effects of grain size. Appl Phys Lett. 2013;103(2):207–597.

    Article  Google Scholar 

  25. Paris PC. A critical analysis of crack propagation laws. Transasme Serd. 1963;85(4):528–33.

    Google Scholar 

  26. Melin S. The influence of the T-stress on the directional stability of cracks. Int J Fracture. 2002;114(3):259–65.

    Article  Google Scholar 

  27. Smith DJ, Ayatollahi MR, Pavier MJ. On the consequences of T-stress in elastic brittle fracture. Proc R Soc A-Math Phys. 2006;462(2072):2415–37.

    Article  Google Scholar 

  28. Robertson SW, Gong XY, Ritchie RO. Effect of product form and heat treatment on the crystallographic texture of austenitic Nitinol. J Mater Sci. 2006;41(3):621–30.

    Article  Google Scholar 

  29. Qian L, Sun Q, Xiao X. Role of phase transition in the unusual microwear behavior of superelastic NiTi shape memory alloy. Wear. 2006;260(4):509–22.

    Article  Google Scholar 

  30. Xia M, Liu P, Sun Q. Grain size dependence of Young’s modulus and hardness for nanocrystalline NiTi shape memory alloy. Mater Lett. 2018;211:352–5.

    Article  Google Scholar 

  31. Wolf E. Fatigue crack closure under cyclic tension. Eng Fract Mech. 1970;2(1):37–45.

    Article  Google Scholar 

  32. Ritchie RO. Mechanisms of fatigue crack propagation in metals, ceramics and composites: Role of crack tip shielding. Mater Sci Eng A-Struct. 1988;103(1):15–28.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of this work from the National Natural Science Foundation of China (Project Nos. 11532010 and 11602176) and the Hong Kong Research Grants Council (GRF Project No. 16214215).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Yin or Qingping Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Yin, H., Kang, G. et al. Fatigue Crack Growth in Cold-Rolled and Annealed Polycrystalline Superelastic NiTi Alloys. Acta Mech. Solida Sin. 31, 599–607 (2018). https://doi.org/10.1007/s10338-018-0056-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-018-0056-0

Keywords

Navigation