Skip to main content
Log in

Acoustic Nonlinearity Parameters Due to Microstructural Defects

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

This study presents a general approach to derive the acoustic nonlinearity parameters induced by various types of dislocation configurations including dislocation strings (monopoles), dislocation dipoles, dislocation pileups and extended dislocations. It is found that expressions of the acoustic nonlinearity parameter induced by such a variety of dislocation configurations share a common mathematical form. They are all scaled with \(\left( {L_{\mathrm{ch}} /b} \right) ^{n}\), where \(L_{\mathrm{ch}} \) is a characteristic length of the dislocation configuration, b is the magnitude of the Burgers vector, and n is either 3 or 4. Semiquantitative analysis is presented to compare the magnitudes of the acoustic nonlinearity parameters among different types of dislocation configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ju T, Achenbach JD, Jacobs LJ, Guimaraes M, Qu J. Ultrasonic nondestructive evaluation of alkali-silica reaction damage in concrete prism samples. Mater Struct. 2016;50(1):60.

    Article  Google Scholar 

  2. Kim J-Y, Jacobs LJ, Qu J, Littles JW. Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. J Acoust Soc Am. 2006;120(3):1266–73.

    Article  Google Scholar 

  3. Matlack K, Wall J, Kim J-Y, Qu J, Jacobs L, Viehrig H-W. Evaluation of radiation damage using nonlinear ultrasound. J Appl Phys. 2012;111(5):054911.

    Article  Google Scholar 

  4. Romer A, Kim J-Y, Qu J, Jacobs LJ. The second harmonic generation in reflection mode: an analytical, numerical and experimental study. J Nondestruct Eval. 2015;35(1):6.

    Article  Google Scholar 

  5. Huang K. On the atomic theory of elasticity. Proc R Soc Lond Ser A Math Phys Sci. 1073;1950(203):178.

    MATH  Google Scholar 

  6. Qu JM, Jacobs LJ, Nagy PB. On the acoustic-radiation-induced strain and stress in elastic solids with quadratic nonlinearity (L). J Acoust Soc Am. 2011;129(6):3449–52.

    Article  Google Scholar 

  7. Qu JM, Nagy PB, Jacobs LJ. Pulse propagation in an elastic medium with quadratic nonlinearity (L). J Acoust Soc Am. 2012;131(3):1827–30.

    Article  Google Scholar 

  8. Suzuki T, Hikata A, Elbaum C. Anharmonicity due to glide motion of dislocations. J Appl Phys. 1964;35(9):2761–6.

    Article  Google Scholar 

  9. Hikata A, Chick BB, Elbaum C. Dislocation contribution to the second harmonic generation of ultrasonic waves. J Appl Phys. 1965;36(1):229–36.

    Article  Google Scholar 

  10. Cantrell JH, Yost WT. Acoustic harmonic generation from fatigue-induced dislocation dipoles. Philos Mag A. 1994;69(2):315–26.

    Article  Google Scholar 

  11. Cash WD, Cai W. Dislocation contribution to acoustic nonlinearity: the effect of orientation-dependent line energy. J Appl Phys. 2011;109(1):014915.

    Article  Google Scholar 

  12. Cash WD, Cai W. Contribution of dislocation dipole structures to the acoustic nonlinearity. J Appl Phys. 2012;111(7):074906.

    Article  Google Scholar 

  13. Chen Z, Qu J. Dislocation-induced acoustic nonlinearity parameter in crystalline solids. J Appl Phys. 2013;114(16):164906.

    Article  Google Scholar 

  14. Zhang J, Xuan F-z, Xiang Y. Dislocation characterization in cold rolled stainless steel using nonlinear ultrasonic techniques: a comprehensive model. EPL (Europhys Lett). 2013;103(6):68003.

    Article  Google Scholar 

  15. Zhang J, Xuan F. A general model for dislocation contribution to acoustic nonlinearity. EPL (Europhys Lett). 2014;105(5):54005.

    Article  Google Scholar 

  16. Cantrell JH, Yost WT. Effect of precipitate coherency strains on acoustic harmonic generation. J Appl Phys. 1997;81(7):2957–62.

    Article  Google Scholar 

  17. Cantrell JH, Zhang X-G. Nonlinear acoustic response from precipitate-matrix misfit in a dislocation network. J Appl Phys. 1998;84(10):5469–72.

    Article  Google Scholar 

  18. Nazarov VE, Sutin AM. Nonlinear elastic constants of solids with cracks. J Acoust Soc Am. 1997;102(6):3349–54.

    Article  Google Scholar 

  19. Zhao Y, Qiu Y, Jacobs LJ, Qu J. Frequency-dependent tensile and compressive effective moduli of elastic solids with randomly distributed two-dimensional microcracks. J Appl Mech. 2015;82(8):081006-081006-081013.

    Article  Google Scholar 

  20. Zhao Y, Qiu Y, Jacobs LJ, Qu J. A micromechanics model for the acoustic nonlinearity parameter in solids with distributed microcracks. In: AIP Conference Proceedings. 2016;1706(1):060001.

  21. Granato A, Lücke K. Theory of mechanical damping due to dislocations. J Appl Phys. 1956;27(6):583–93.

    Article  Google Scholar 

  22. Cottrell AH. The nature of metals. Scientific American. 1967.

    Article  Google Scholar 

  23. Teichmann K, Liebscher CH, Volkl R, Glatzel U, Vorberg S. High temperature strengthening mechanisms in the alloy platinum-5% rhodium DPH. Platin Met Rev. 2011;55(4):217–24.

    Article  Google Scholar 

  24. Suresh S. Fatigue of materials. 2nd ed. Cambridge: Cambridge University Press; 1998.

    Book  Google Scholar 

  25. Nazarov VE, Sutin AM. Nonlinear elastic constants of solids with cracks. J Acoust Soc Am. 1997;102(6):3349–54.

    Article  Google Scholar 

  26. Zhao YX, Qiu YJ, Jacobs LJ, Qu JM. Frequency-dependent tensile and compressive effective moduli of elastic solids with distributed penny-shaped microcracks. Acta Mech. 2016;227(2):399–419.

    Article  MathSciNet  Google Scholar 

  27. Gao X, Qu J. Acoustic nonlinearity parameter induced by extended dislocations. unpublished. 2018.

    Article  Google Scholar 

  28. Gao X, Qu J. Acoustic nonlinearity parameter induced by dislocation pile-ups. unpublished. 2018.

  29. Hull D, Bacon DJ. Introduction to dislocations. 5th ed. Oxford: Elsevier, Butterworth-Heinemann; 2011. p. 59–61.

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NSF through CMMI-1613640.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Qu, J. Acoustic Nonlinearity Parameters Due to Microstructural Defects. Acta Mech. Solida Sin. 31, 525–534 (2018). https://doi.org/10.1007/s10338-018-0053-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-018-0053-3

Keywords

Navigation