Reprogrammable 3D Mesostructures Through Compressive Buckling of Thin Films with Prestrained Shape Memory Polymer

Abstract

The mechanically guided assembly that relies on the compressive buckling of strategically patterned 2D thin films represents a robust route to complex 3D mesostructures in advanced materials and even functional micro-devices. Based on this approach, formation of complex 3D configurations with suspended curvy features or hierarchical geometries remains a challenge. In this paper, we incorporate the prestrained shape memory polymer in the 2D precursor design to enable local rolling deformations after the mechanical assembly through compressive buckling. A theoretical model captures quantitatively the effect of key design parameters on local rolling deformations. The combination of precisely controlled global buckling and local rolling expands substantially the range of accessible 3D configurations. The combined experimental and theoretical studies over a dozen of examples demonstrate the utility of the proposed strategy in achieving complex reprogrammable 3D mesostructures.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Zhang H, Yu X, Braun PV. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat Nanotechnol. 2011;6(5):277–81.

    Article  Google Scholar 

  2. 2.

    Wu H. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun. 2013;4:1943.

    Article  Google Scholar 

  3. 3.

    Pikul JH. High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat Commun. 2013;4:1732–6.

    Article  Google Scholar 

  4. 4.

    Sun K. 3D printing of interdigitated Li-ion microbattery architectures. Adv Mater. 2013;25(33):4539–43.

    Article  Google Scholar 

  5. 5.

    Wei TS. 3D printing of customized li-ion batteries with thick electrodes. Adv Mater. 2018;30(16):e1703027.

    Article  Google Scholar 

  6. 6.

    Dong K. 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv Mater. 2017;29(38):1702648.

    Article  Google Scholar 

  7. 7.

    Song Z. Origami lithium-ion batteries. Nat Commun. 2014;5:3140.

    Article  Google Scholar 

  8. 8.

    Song J, Feng X, Huang Y. Mechanics and thermal management of stretchable inorganic electronics. Natl Sci Rev. 2016;3(1):128–43.

    Article  Google Scholar 

  9. 9.

    Schaedler TA, et al. Ultralight metallic microlattices. Science. 2011;334(6058):962–5.

    Article  Google Scholar 

  10. 10.

    Soukoulis CM, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photon. 2011;5(9):523–30.

    Article  Google Scholar 

  11. 11.

    Zheng X, et al. Ultralight, ultrastiff mechanical metamaterials. Science. 2014;344(6190):1373–7.

    Article  Google Scholar 

  12. 12.

    Tian B. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat Mater. 2012;11(11):986–94.

    Article  Google Scholar 

  13. 13.

    Mannoor MS. 3D printed bionic ears. Nano Lett. 2013;13(6):2634–9.

    Article  Google Scholar 

  14. 14.

    Leong TG. Tetherless thermobiochemically actuated microgrippers. Proc Natl Acad Sci USA. 2009;106(3):703–8.

    Article  Google Scholar 

  15. 15.

    Feiner R. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function. Nat Mater. 2016;15(6):679–85.

    Article  Google Scholar 

  16. 16.

    Liu X. 3D printing of living responsive materials and devices. Adv Mater. 2018;30(4):1704821.

    Article  Google Scholar 

  17. 17.

    Ahn BY. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science. 2009;323(5921):1590–3.

    Article  Google Scholar 

  18. 18.

    Huang W. On-chip inductors with self-rolled-up SiNx nanomembrane tubes: a novel design platform for extreme miniaturization. Nano Lett. 2012;12(12):6283–8.

    Article  Google Scholar 

  19. 19.

    Grimm D. Rolled-up nanomembranes as compact 3D architectures for field effect transistors and fluidic sensing applications. Nano Lett. 2013;13(1):213–8.

    Article  Google Scholar 

  20. 20.

    Zhang K. Origami silicon optoelectronics for hemispherical electronic eye systems. Nat Commun. 2017;8(1):1782.

    Article  Google Scholar 

  21. 21.

    Jang KI. Self-assembled three dimensional network designs for soft electronics. Nat Commun. 2017;8:15894.

    Article  Google Scholar 

  22. 22.

    Zheng ZG. Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal. Adv Mater. 2017;29(42):1703165.

    Article  Google Scholar 

  23. 23.

    Guo SZ. 3D printed stretchable tactile sensors. Adv Mater. 2017;29(27):1701218.

    Article  Google Scholar 

  24. 24.

    Cho JH, et al. Nanoscale origami for 3D optics. Small. 2011;7(14):1943–8.

    Article  Google Scholar 

  25. 25.

    Liu Z. 3D-structured stretchable strain sensors for out-of-plane force detection. Adv Mater. 2018;30(26):1707285.

    Article  Google Scholar 

  26. 26.

    Chen Z, Chen W, Song J. Buckling of a stiff thin film on an elastic graded compliant substrate. Proc Math Phys Eng Sci. 2017;473(2208):20170410.

    MathSciNet  Article  Google Scholar 

  27. 27.

    Yang H. 3D printed photoresponsive devices based on shape memory composites. Adv Mater. 2017;29(33):1701627.

    Article  Google Scholar 

  28. 28.

    Yuan C. 3D printed reversible shape changing soft actuators assisted by liquid crystal elastomers. Soft Matter. 2017;13(33):5558–68.

    Article  Google Scholar 

  29. 29.

    Compton BG, Lewis JA. 3D-printing of lightweight cellular composites. Adv Mater. 2014;26(34):5930–5.

    Article  Google Scholar 

  30. 30.

    Kolesky DB. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26(19):3124–30.

    Article  Google Scholar 

  31. 31.

    Zhu W. 3D-printed artificial microfish. Adv Mater. 2015;27:4411–7.

    Article  Google Scholar 

  32. 32.

    Cangialosi A, et al. DNA sequence-directed shape change of photopatterned hydrogels via high-degree swelling. Science. 2017;357:1126–30.

    Article  Google Scholar 

  33. 33.

    Zhang B. Reprocessable thermosets for sustainable three-dimensional printing. Nat Commun. 2018;9(1):1831.

    Article  Google Scholar 

  34. 34.

    Truby RL. Soft somatosensitive actuators via embedded 3D printing. Adv Mater. 2018;30(15):1706383.

    Article  Google Scholar 

  35. 35.

    Hsiao LC, et al. 3D printing of self-assembling thermoresponsive nanoemulsions into hierarchical mesostructured hydrogels. Soft Matter. 2017;13(5):921–9.

    Article  Google Scholar 

  36. 36.

    Huang Y, et al. Versatile, kinetically controlled, high precision electrohydrodynamic writing of micro/nanofibers. Sci Rep. 2014;4:5949.

    Article  Google Scholar 

  37. 37.

    Ye D. Large-scale direct-writing of aligned nanofibers for flexible electronics. Small. 2018;14(21):e1703521.

    Article  Google Scholar 

  38. 38.

    Py C. Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys Rev Lett. 2007;98(15):156103.

    Article  Google Scholar 

  39. 39.

    Yang Y. Solvent-assisted programming of flat polymer sheets into reconfigurable and self-healing 3D structures. Nat Commun. 2018;9(1):1906.

    Article  Google Scholar 

  40. 40.

    Hawkes E. Programmable matter by folding. Proc Natl Acad Sci USA. 2010;107(28):12441–5.

    Article  Google Scholar 

  41. 41.

    Mao Y. Programmable bidirectional folding of metallic thin films for 3D chiral optical antennas. Adv Mater. 2017;29(19):1606482.

    Article  Google Scholar 

  42. 42.

    Cui J, Adams JGM, Zhu Y. Pop-up assembly of 3D structures actuated by heat shrinkable polymers. Smart Mater Struct. 2017;26(12):125011.

    Article  Google Scholar 

  43. 43.

    Cui J, Adams JGM, Zhu Y. Controlled bending and folding of a bilayer structure consisting of a thin stiff film and a heat shrinkable polymer sheet. Smart Mater Struct. 2018;27(5):055009.

    Article  Google Scholar 

  44. 44.

    Lin SY, et al. A three-dimensional photonic crystal operating at infrared wavelengths. Nature. 1998;394:251–3.

    Article  Google Scholar 

  45. 45.

    Noda S. Full three-dimensional photonic bandgap crystals at near-lnfrared wavelengths. Science. 2000;289:604–6.

    Article  Google Scholar 

  46. 46.

    Qi M, et al. A three-dimensional optical photonic crystal with designed point defects. Nature. 2004;429:538–42.

    Article  Google Scholar 

  47. 47.

    Yan Z. Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots. Proc Natl Acad Sci USA. 2017;114(45):E9455–64.

    Article  Google Scholar 

  48. 48.

    Zhang Y. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat Rev Mater. 2017;2:17019.

    Article  Google Scholar 

  49. 49.

    Rogers J. Origami MEMS and NEMS. Mrs Bull. 2016;41(2):123–9.

    Article  Google Scholar 

  50. 50.

    Xu S, et al. Assemble of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science. 2015;347(6218):154–9.

    Article  Google Scholar 

  51. 51.

    Fan Z, et al. A double perturbation method of postbuckling analysis in 2D curved beams for assembly of 3D ribbon-shaped structures. J Mech Phys Solids. 2018;111:215–38.

    MathSciNet  Article  Google Scholar 

  52. 52.

    Fu H. Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. Nat Mater. 2018;17:268–76.

    Article  Google Scholar 

  53. 53.

    Yan Z, et al. Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials. Adv Funct Mater. 2016;26(16):2629–39.

    Article  Google Scholar 

  54. 54.

    Zhang Y. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. Proc Natl Acad Sci USA. 2015;112(38):11757–64.

    Article  Google Scholar 

Download references

Acknowledgements

X.G. and Z.X. contributed equally to this work. Y.Z. acknowledges the support from the National Natural Science Foundation of China (Grant Nos. 11502129 and 11722217) and the Tsinghua National Laboratory for Information Science and Technology. Y.H. acknowledges the support from the NSF (Grant Nos. CMMI1400169, CMMI1534120 and CMMI1635443). X.G. acknowledges the support from the National Natural Science Foundation of China (Grant Nos. 11702155).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yihui Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Xu, Z., Zhang, F. et al. Reprogrammable 3D Mesostructures Through Compressive Buckling of Thin Films with Prestrained Shape Memory Polymer. Acta Mech. Solida Sin. 31, 589–598 (2018). https://doi.org/10.1007/s10338-018-0047-1

Download citation

Keywords

  • Mechanically guided 3D assembly
  • Reprogrammable 3D mesostructures
  • Shape memory polymer
  • Buckling
  • Rolling