Skip to main content
Log in

Molecular Dynamics Simulations of Thermal Properties of Polymer Composites Enhanced by Cross-Linked Graphene Sheets

  • Original Paper
  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Molecular models of pristine, functionalized and cross-linked graphene sheet/polymer composites are developed. Temperature cooling processes are conducted to examine the improvement of glass transition temperature of cross-linked graphene sheet/polymer composites using molecular dynamics simulations. The results show that increases of about 12.2% and 8.9% in the glass transition temperature of cross-linked graphene sheet/polymer composites are obtained, respectively, than those of the pristine and functionalized graphene sheet/polymer composites. In order to reveal the enhanced thermal properties from atomic views, the interfacial interaction energy and radius distribution function between the graphene sheets and the polymer matrix, the mean square displacement variations and the free volume of polymer composites are examined and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rosen SL. Fundamental principles of polymeric materials. Chichester: Wiley; 1982.

    Google Scholar 

  2. Ward IM, Sweeney J. An introduction to the mechanical properties of solid polymers. Chichester: Wiley; 2004. p. 382.

    Google Scholar 

  3. Xing W, Li H, Huang G, Cai LH, Wu J. Graphene oxide induced crosslinking and reinforcement of elastomers. Compos Sci Technol. 2017;144:223–9.

    Article  Google Scholar 

  4. Jin L, Wang Z, Zheng S, Mi B. Polyamide-crosslinked graphene oxide membrane for forward osmosis. J Membr Sci. 2018;545:11–8.

    Article  Google Scholar 

  5. Yu Y, Shu Y, Ye L. In situ crosslinking of poly (vinyl alcohol)/graphene oxide–glutamic acid nano-composite hydrogel as microbial carrier: intercalation structure and its wastewater treatment performance. Chem Eng J. 2018;336:306–14.

    Article  Google Scholar 

  6. Agag T, Koga T, Takeichi T. Studies on thermal and mechanical properties of polyimide–clay nanocomposites. Polymer. 2001;42(8):3399–408.

    Article  Google Scholar 

  7. Saheb DN, Jog JP. Natural fiber polymer composites: a review. Adv Polym Technol. 1999;18(4):351–63.

    Article  Google Scholar 

  8. Kwon DJ, Shin PS, Kim JH, Baek YM, Park HS, Devries KL, Park JM. Interfacial properties and thermal aging of glass fiber/epoxy composites reinforced with SiC and SiO\(_2\) nanoparticles. Compos Part B Eng. 2017;130:46–53.

    Article  Google Scholar 

  9. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Ruoff RS. Graphene-based composite materials. Nature. 2006;442(7100):282.

    Article  Google Scholar 

  10. Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–8.

    Article  Google Scholar 

  11. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Nguyen ST. Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol. 2008;3(6):327–31.

    Article  Google Scholar 

  12. Li YL, Wang SJ, Wang Q, Xing M. A comparison study on mechanical properties of polymer composites reinforced by carbon nanotubes and graphene sheet. Compos Part B Eng. 2018;133:35–41.

    Article  Google Scholar 

  13. Layek RK, Das AK, Park MJ, Kim NH, Lee JH. Enhancement of physical, mechanical, and gas barrier properties in noncovalently functionalized graphene oxide/poly (vinylidene fluoride) composites. Carbon. 2015;81:329–38.

    Article  Google Scholar 

  14. Li YL, Wang SJ, Wang Q. Enhancement of tribological properties of polymer composites reinforced by functionalized graphene. Compos Part B Eng. 2017;120:83–91.

    Article  Google Scholar 

  15. Xue Q, Lv C, Shan M, Zhang H, Ling C, Zhou X, Jiao Z. Glass transition temperature of functionalized graphene–polymer composites. Comput Mater Sci. 2013;71:66–71.

    Article  Google Scholar 

  16. Ma J, Meng Q, Michelmore A, Kawashima N, Izzuddin Z, Bengtsson C, Kuan HC. Covalently bonded interfaces for polymer/graphene composites. J Mater Chem A. 2013;1(13):4255–64.

    Article  Google Scholar 

  17. Fang M, Wang K, Lu H, Yang Y, Nutt S. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem. 2009;19(38):7098–105.

    Article  Google Scholar 

  18. Cheng Q, Wu M, Li M, Jiang L, Tang Z. Ultratough artificial nacre based on conjugated cross-graphene oxide. Angew Chem Int Edit. 2013;52(13):3750–5.

    Article  Google Scholar 

  19. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Aksay IA. Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B. 2006;110(17):8535–9.

    Article  Google Scholar 

  20. Polyak BT. The conjugate gradient method in extremal problems. USSR Comput Math Math Phys. 1969;9(4):94–112.

    Article  Google Scholar 

  21. Li Y, Wang S, He E, Wang Q. The effect of sliding velocity on the tribological properties of polymer/carbon nanotube composites. Carbon. 2016;106:106–9.

    Article  Google Scholar 

  22. Halgren TA. The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters. J Am Chem Soc. 1992;114(20):7827–43.

    Article  Google Scholar 

  23. Andersen HC. Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys. 1980;72(4):2384–93.

    Article  Google Scholar 

  24. Berendsen HJ, Postma JV, van Gunsteren WF, DiNola ARHJ, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81(8):3684–90.

    Article  Google Scholar 

  25. Soldera A, Grohens Y. Local dynamics of stereoregular PMMAs using molecular simulation. Macromolecules. 2002;35(3):722–6.

    Article  Google Scholar 

  26. Richard AL. Interface and surface effects on the glass-transition temperature in thin polymer films. Faraday Discuss. 1994;98:219–30.

    Article  Google Scholar 

  27. Pan F, Peng F, Jiang Z. Diffusion behavior of benzene/cyclohexane molecules in poly (vinyl alcohol)–graphite hybrid membranes by molecular dynamics simulation. Chem Eng Sci. 2007;62(3):703–10.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Program for Liaoning Innovative Research Team in University-LNIRT (LT2014003) and Liaoning Climbing Scholar (10142) Program.

Author information

Authors and Affiliations

Authors

Contributions

YL conducted the molecular simulations and theoretical analyses. QW and SW supervised the entire work and contributed to the manuscript preparations. All authors read and corrected the manuscript before submission.

Corresponding author

Correspondence to Quan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, S. & Wang, Q. Molecular Dynamics Simulations of Thermal Properties of Polymer Composites Enhanced by Cross-Linked Graphene Sheets. Acta Mech. Solida Sin. 31, 673–682 (2018). https://doi.org/10.1007/s10338-018-0033-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-018-0033-7

Keywords

Navigation