Acta Mechanica Solida Sinica

, Volume 31, Issue 1, pp 19–31 | Cite as

Damage Analysis of Superconducting Composite Wire with Bridging Model

Original Paper
  • 18 Downloads

Abstract

The multi-filamentary \(\hbox {Bi}_{2}\hbox {Sr}_{2}\hbox {CaCu}_{2}\hbox {O}_{8+\mathrm{x}}\) (Bi-2212) round wires are made of superconducting filaments, metal Ag and Ag alloy, which are typical composite structure. Since the filament is brittle, there are various defects and cracks in the Bi-2212 round wire after heat treatment. In this paper, we assume that the filaments in the wire are uniformly arranged. Adopting the bridging model which is often used in the fiber-reinforced composite, we calculate the ultimate strength of the round wire. The effects of the volume fraction, elastic modulus and interface shear strength are discussed in detail.

Keywords

Bi-2212 composite Crack Bridging model Stress intensity factor Ultimate tensile strength 

Notes

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China (Nos. 11472120 and 11327802) and the Fundamental Research Funds for the Central Universities (lzujbky-2017-k18).

References

  1. 1.
    Gupta R, Anerella M, Cozzolino J, Escallire J. Status of high temperature superconductor magnet R&D at BNL. IEEE Trans Appl Supercond. 2004;14(2):1198–201.CrossRefGoogle Scholar
  2. 2.
    Gubser DU. Superconductivity: an emerging power-dense energy-efficient technology. IEEE Trans Appl Supercond. 2004;14(4):2037–46.CrossRefGoogle Scholar
  3. 3.
    Maeda H, Sastry PVPSS, Trociewitz UP, Schwartz J, Ohya K, Sato M, et al. Effect of magnetic field strength in melt-processing on texture development and critical current density of Bi-oxide superconductors. Phys C. 2003;386(8):115–21.CrossRefGoogle Scholar
  4. 4.
    Miao H, Huang Y, Hong S, Parrell JA. Recent advances in Bi-2212 round wire performance for high field applications. IEEE Trans Appl Supercond. 2013;23(3):6400104.CrossRefGoogle Scholar
  5. 5.
    Zhang W, Pupysheva OV, Ma Y, Polak M, Hellstrom EE, Larbalestier DC. Study of the effect of the Sr/Ca ratio on the microstructure and critical current density of Bscco 2212 Ag-sheathed tapes. IEEE Trans Appl Supercond. 1997;7(2):1544–7.CrossRefGoogle Scholar
  6. 6.
    Liu D, Yong H, Zhou Y. Analysis of critical current density in \(\text{ Bi }_{2}\text{ Sr }_{2}\text{ CaCu }_{2}\text{ O }_{8+{\rm x}}\) round wire with filament fracture. J Supercond Novel Magn. 2016;29(9):1–11.CrossRefGoogle Scholar
  7. 7.
    Liu D, Xia J, Yong H, Zhou Y. Estimation of critical current distribution in \(\text{ Bi }_{2}\text{ Sr }_{2}\text{ CaCu }_{2}{\rm Ox}\) cables and coils using a self-consistent model. Supercond Technol. 2016;29(6):065020.CrossRefGoogle Scholar
  8. 8.
    Gou X, Schwartz J. Fractal analysis of the role of the rough interface between \(\text{ Bi }_{2}\text{ Sr }_{2}\text{ CaCu }_{2}{\rm Ox}\) filaments and the Ag matrix in the mechanical behavior of composite round wires. Supercond Sci Technol. 2013;26(5):055016.CrossRefGoogle Scholar
  9. 9.
    Le QV, Chan WK, Schwartz J. Two-dimensional peridynamic simulation of the effect of defects on the mechanical behavior of \(\text{ Bi }_{2}\text{ Sr }_{2}\text{ CaCu }_{2}\text{ Ox }\) round wires. Supercond Sci Technol. 2014;27(11):115007.CrossRefGoogle Scholar
  10. 10.
    Schwartz J, Amm BC, Garmestani H, Hilton DK, Hascicek Y. Mechanical properties and strain effects in \(\text{ Bi }_{2}\text{ Sr }_{2}\text{ CaCu }_{2}\text{ Ox } /\text{ AgMg }\) composite conductors. IEEE Trans Appl Supercond. 2002;7(2):2038–41.CrossRefGoogle Scholar
  11. 11.
    Lu Y, Wang Z, Yong H, Zhou Y. Modeling effects of gas bubbles on the mechanical behaviors of Ag/Bi-2212 round wires using a double cantilever beam bridge model. Cryogenics. 2016;77:65–73.CrossRefGoogle Scholar
  12. 12.
    Yang Y, Yong H, Zhou Y. Mechanical behavior in Bi-2212 superconducting wires. 2017 (Submitted).Google Scholar
  13. 13.
    Sugano M, Itoh K, Kiyoshi T. Strain dependence of critical current in Bi2212 W&R wires under magnetic field up to 30 T. IEEE Trans Appl Supercond. 2006;16(2):1039–42.CrossRefGoogle Scholar
  14. 14.
    Haken BT, Kate HHJT, Tenbrink J. Compressive and tensile axial strain reduced critical currents in Bi-2212 conductors. IEEE Trans Appl Supercond. 2004;5(2):1298–301.CrossRefGoogle Scholar
  15. 15.
    Shin JK, Ochiai S, Sugano M, Okuda H, Mukai Y, Sato M, et al. Analysis of the residual strain change of Bi2212, Ag alloy and Ag during the heating and cooling process in Bi2212/Ag/Ag alloy composite wire. Supercond Sci Technol. 2008;21(7):72.CrossRefGoogle Scholar
  16. 16.
    Dai C, Liu B, Qin J, Liu F, Wu Y, Zhou C. The axial tensile stress–strain characterization of Ag-sheathed Bi2212 round wire. IEEE Trans Appl Supercond. 2015;25(3):1–4.Google Scholar
  17. 17.
    Cheggour N, Lu XF, Holesinger TG, Stauffer TC, Jiang J, Goodrich LF. Reversible effect of strain on transport critical current in \(\text{ Bi }_{2}\text{ Sr }_{2}\text{ CaCu }_{2}\text{ O }_{8 }+ \text{ x }\) superconducting wires: a modified descriptive strain model. Supercond Sci Technol. 2012;25(1):015001.CrossRefGoogle Scholar
  18. 18.
    Yang Y, Yong H, Zhou Y. Numerical simulations of AC losses in multifilamentary superconducting tapes under bending strain. IEEE Trans Appl Supercond. 2017;27(5):1–10.CrossRefGoogle Scholar
  19. 19.
    Gamstedt EK, Östlund S. Fatigue propagation of fibre-bridged cracks in unidirectional polymer-matrix composites. Appl Compos Mater. 2001;8(6):385–410.CrossRefGoogle Scholar
  20. 20.
    Budiansky B, Evans AG, Hutchinson JW. Fiber-matrix debonding effects oncracking in aligned fiber ceramic composites. Int J Solids Struct. 1995;32(3–4):315–28.CrossRefMATHGoogle Scholar
  21. 21.
    Mccartney LN. New theoretical model of stress transfer between fibre and matrix in a uniaxially fibre-reinforced composite. Proc R Soc Lond. 1868;1989(425):215–44.Google Scholar
  22. 22.
    Yong H, Yang P, Xue C, Zhou Y. Fracture behavior of filament in \(\text{ Nb }_{3}\text{ Sn }\) strands with crack-bridging model. Fusion Eng Des. 2016;102:66–73.CrossRefGoogle Scholar
  23. 23.
    Marshall DB, Cox BN, Evans AG. The mechanics of matrix cracking in brittle-matrix fiber composites. Acta Metall. 1985;33(11):2013–21.CrossRefGoogle Scholar
  24. 24.
    Qu J, Cherkaoui M. Fundamentals of micromechanics of solids. Hoboken: Wiley; 2006.Google Scholar
  25. 25.
    Yanase K, Ju JW. Toughening behavior of unidirectional fiber reinforced composites containing a crack-like flaw: matrix crack without fiber break. Int J Damage Mech. 2013;22(3):336–55.CrossRefGoogle Scholar
  26. 26.
    Shao Y, Zhao HP, Feng XQ. On flaw tolerance of nacre: a theoretical study. J R Soc Interface. 2014;11(92):20131016.CrossRefGoogle Scholar
  27. 27.
    Jacobsen TK, Sørensen BF. Mode I intra-laminar crack growth in composites—modelling of R-curves from measured bridging laws. Compos Part A Appl Sci Manuf. 2001;32(1):1–11.CrossRefGoogle Scholar
  28. 28.
    Sorensen L, Botsis J, Gmür T, Cugnoni J. Delamination detection and characterisation of bridging tractions using long FBG optical sensors. Compos A. 2007;38(10):2087–96.CrossRefGoogle Scholar
  29. 29.
    Shin JK, Ochiai S, Okuda H, Mukai Y, Matsubayashi H, Oh SS, et al. Estimation of Young’s modulus, residual strain and intrinsic fracture strain of Bi2212 filaments in Bi2212/Ag/Ag alloy composite wire. Phys C. 2008;468(15–20):1792–5.CrossRefGoogle Scholar
  30. 30.
    Mitchell N, Devred A, Larbalestier DC, Lee PJ, Sanabria C, Nijhuis A. Reversible and irreversible mechanical effects in real cable-in-conduit conductors. Supercond Sci Technol. 2013;26(11):114004.CrossRefGoogle Scholar
  31. 31.
    Liu B, Jing Z, Yong H, Zhou Y. Strain distributions in superconducting strands with twisted filaments. Compos Struct. 2017;174:158–65.Google Scholar
  32. 32.
    Jing Z, Yong H, Zhou Y. Theoretical modeling for the effect of twisting on the properties of multifilamentary \(\text{ Nb }_{3}\text{ Sn }\) superconducting strand. IEEE Trans Appl Supercond. 2013;23(1):6000307.CrossRefGoogle Scholar
  33. 33.
    Han Z, Skovhansen P, Freltoft T. The mechanical deformation of superconducting BiSrCaCuO/Ag composites. Supercond Sci Technol. 1997;10(6):371.CrossRefGoogle Scholar
  34. 34.
    Salazar A, Pastor JY, Llorca J. Strength and fracture toughness of hot-pressed bulk \(\text{ Bi }_{2}\text{ Sr }_{2}\text{ Ca }_{2}\text{ Cu }_{3}\text{ Ox }\) and \(\text{ Bi }_{2}\text{ Sr }_{2}\text{ Ca }_{2}\text{ Cu }_{3}\text{ Ox/Ag }\) at 77 and 300 K. Phys C. 2003;385(3):404–14.CrossRefGoogle Scholar
  35. 35.
    Marshall DB, Cox BN. Tensile fracture of brittle matrix composites: Influence of fiber strength. Acta Metall. 1987;35(11):2607–19.CrossRefGoogle Scholar
  36. 36.
    Wang Z, Yong H, Zhou Y. Degradation of critical current in Bi2212 composite wire under compression load. Appl Math Mech (English Edition). 2017;12:1–12.MathSciNetGoogle Scholar
  37. 37.
    Godeke A, Hartman MHC, Mentink MGT, Jiang J, Matras M, Hellstrom EE, et al. Critical current of dense Bi-2212 round wires as a function of axial strain. Supercond Sci Technol. 2015;28(3):032001.Google Scholar
  38. 38.
    Shen T, Li P, Jiang J, Cooley L, Tompkins J, Mcrae D, et al. High strength kiloampere \(\text{ Bi }_{2}\text{ Sr }_{2}\text{ Ca }_{2}\text{ Cu }_{2}\text{ Ox }\) cables for high-field magnet applications. Supercond Sci Technol. 2017;28:065002.CrossRefGoogle Scholar
  39. 39.
    Fukuda Y, Matsumura M, Kajikawa K, Iwakuma M, Funaki K, Hasegawa T, et al. AC loss properties of Bi-2212 Rutherford-type cables. Phys C. 2001;357–360(8):1263–6.CrossRefGoogle Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics and Technology 2018

Authors and Affiliations

  1. 1.Key Laboratory of Mechanics on Environment and Disaster in Western ChinaThe Ministry of Education of ChinaBeijingChina
  2. 2.Department of Mechanics and Engineering Sciences, College of Civil Engineering and MechanicsLanzhou UniversityLanzhouChina

Personalised recommendations