Skip to main content
Log in

Nonlinear Transient Response of Functionally Graded Material Sandwich Doubly Curved Shallow Shell Using New Displacement Field

  • Original Paper
  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

In this paper, the nonlinear transient dynamic response of functionally graded material (FGM) sandwich doubly curved shell with homogenous isotropic material core and functionally graded face sheet is analyzed using a new displacement field on the basis of Reddy’s third-order shear theory for the first time. The equivalent material properties for the FGM face sheet are assumed to obey the rule of simple power law function in the thickness direction. Based on Reddy’s theory of higher shear deformation, a new displacement field is developed by introducing the secant function into transverse displacement. Four coupled nonlinear differential equations are obtained by applying Hamilton’s principle and Galerkin method. It is assumed that the FGM sandwich doubly curved shell is subjected to step loading, air-blast loading, triangular loading, and sinusoidal loading, respectively. On the basis of double-precision variable-coefficient ordinary differential equation solver, a new program code in FORTRAN software is developed to solve the nonlinear transient dynamics of the system. The influences of core thickness, volume fraction, core-to-face sheet thickness ratio, width-to-thickness ratio and blast type on the transient response of the shell are discussed in detail through numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ichikawa K. Functionally graded materials in the 21st Century: a workshop on trends and forecasts. Norwell: Kluwer Academic; 2000.

    Google Scholar 

  2. Pandey S, Pradyumna S. Free vibration of functionally graded sandwich plates in thermal environment using a layer-wise theory. Eur J Mech A/Solids. 2015;51:55–66.

    Article  MathSciNet  Google Scholar 

  3. Pandey S, Pradyumna S. A layer-wise finite element formulation for free vibration analysis of functionally graded sandwich shells. Compos Struct. 2015;133:438–50.

    Article  Google Scholar 

  4. Zenkour AM. A comprehensive analysis of functionally graded sandwich plates: part 2- buckling and free vibration. Int J Solids Struct. 2005;42:5243–58.

    Article  MATH  Google Scholar 

  5. Li Q, Iu VP, Kou KP. Three-dimensional vibration analysis of functionally graded material sandwich plates. J Sound Vib. 2008;311:498–515.

    Article  Google Scholar 

  6. El Meiche N, Tounsi A, Ziane N, Mechab I, AddaBedia EA. A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate. Int J Mech Sci. 2011;53(4):237–47.

    Article  Google Scholar 

  7. Xiang S, Jin YX, Bi ZY, Jiang SX. A n-order shear deformation theory for free vibration of functionally graded and composite sandwich plates. Compos Struct. 2011;93:2826–32.

    Article  Google Scholar 

  8. Natarajan S, Ganapathi M. Bending and vibration of functionally graded material sandwich plates using an accurate theory. Finite Elem Anal Des. 2012;57:32–42.

    Article  Google Scholar 

  9. Dozio L. Natural frequencies of sandwich plates with FGM core via variable -kinematic 2-D Ritz models. Compos Struct. 2013;96:561–8.

    Article  Google Scholar 

  10. Neves AMA, Ferreira AJM, Carrera E, Cinefra M, Roque CMC, Jorge RMN. Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Compos Part B Eng. 2013;44(1):657–74.

    Article  Google Scholar 

  11. Wu CP, Kuo CH. A unified formulation of PVD-based finite cylindrical layer methods for functionally graded material sandwich cylinders. Appl Math Model. 2013;37:916–38.

    Article  MathSciNet  MATH  Google Scholar 

  12. Carrera E, Brischetto S, Cinefra M, Soave M. Effects of thickness stretching in functionally graded plates and shells. Compos Part B Eng. 2011;42:123–33.

    Article  Google Scholar 

  13. Batra RC, Vidoli S. Higher-order piezoelectric plate theory derived from a three-dimensional variational principle. Aiaa J. 2002;40:91–104.

    Article  Google Scholar 

  14. Batra RC, Vidoli S, Vestroni F. Plane wave solutions and modal analysis in higher order shear and normal deformable plate theories. J Sound Vib. 2002;257(1):63–88.

    Article  Google Scholar 

  15. Cinefra M, Belouettar S, Soave M, Carrera E. Variable kinematic models applied to free-vibration of functionally graded material shells. Eur J Mech A /Solids. 2010;29:1078–87.

    Article  Google Scholar 

  16. Fazzolari FA, Carrera E. Refined hierarchical kinematics quasi-3D Ritz models for free vibration analysis of doubly curved FGM shells and sandwich shells with FGM core. J Sound Vib. 2014;333(5):1485–508.

    Article  Google Scholar 

  17. Fazzolari FA. Natural frequencies and critical temperatures of functionally graded sandwich plates subjected to uniform and non-uniform temperature distributions. Compos Struct. 2015;121:197–210.

    Article  Google Scholar 

  18. Fazzolari FA. Reissner’s mixed variational theorem and variable kinematics in the modelling of laminated composite and FGM doubly-curved shells. Compos Part B. 2016;89:408–23.

    Article  Google Scholar 

  19. Bo Liu, Ferreira AJM, Xing YF, Neves AMA. Analysis of functionally graded sandwich and laminated shells using a layerwise theory and a differential quadrature finite element method. Compos Struct. 2016;136:546–53.

    Article  Google Scholar 

  20. Liew KM, Yang J, Wu YF. Nonlinear vibration of a coating-FGM-substrate cylindrical panel subjected to a temperature gradient. Comput Method Appl Mech Eng. 2006;195:1007–26.

    Article  MATH  Google Scholar 

  21. Xia XK, Shen HS. Nonlinear vibration and dynamic response of FGM plates with piezoelectric fiber reinforced composite actuators. Compos Struct. 2009;90:254–62.

    Article  Google Scholar 

  22. Wang ZX, Shen HS. Nonlinear analysis of sandwich plates with FGM face sheets resting on elastic foundations. Compos Struct. 2011;93:2521–32.

    Article  Google Scholar 

  23. Mohammed S. Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Compos Struct. 2013;99:76–87.

    Article  Google Scholar 

  24. Nguyen DD, Tran QQ, Vu DL. Nonlinear dynamic analysis and vibration of shear deformable piezoelectric FGM double curved shallow shells under damping thermo electro-mechanical loads. Compos Struct. 2015;125:29–40.

    Article  Google Scholar 

  25. Sofiyev AH, Kuruoglu N. Parametric instability of shear deformable sandwich cylindrical shells containing an FGM core under static and time dependent periodic axial loads. Int J Mech Sci. 2015;101–102:114–23.

    Article  Google Scholar 

  26. Sofiyev AH, Kuruoglu N. Effect of a functionally graded inter layer on the non-linear stability of conical shells in elastic medium. Compos Struct. 2013;99:296–308.

    Article  Google Scholar 

  27. Mesut S, Mohammed AS. Static, free and forced vibration of functionally graded (FG) sandwich beams excited by two successive moving harmonic loads. Compos Part B. 2017;108:18–34.

    Article  Google Scholar 

  28. Terry H. Advanced functionally graded plate-type structures impacted by blast loading. Int J Impact Eng. 2011;38:314–21.

    Article  Google Scholar 

  29. Hause T, Librescu L. Dynamic response of doubly-curved anisotropic sandwich panel impacted by blast loadings. Int J Solids Struct. 2007;44:6678–700.

    Article  MATH  Google Scholar 

  30. Cenk A, Akın O, Zahit M, Mehmet HO. Nonlinear transient analysis of FGM and FML plates under blast loads by experimental and mixed FE methods. Compos Struct. 2012;94:731–44.

    Article  Google Scholar 

  31. Setoodeh AR, Tahani M, Selahi E. Transient dynamic and free vibration analysis of functionally graded truncated conical shells with non-uniform thickness subjected to mechanical shock loading. Compos Part B. 2012;43:2161–71.

    Article  Google Scholar 

  32. Alipour MM, Shariyat M. Analytical zigzag elasticity transient and forced dynamic stress and displacement response prediction of the annular FGM sandwich plates. Compos Struct. 2013;106:426–45.

    Article  Google Scholar 

  33. Kazanci Z. A review on the response of blast loaded laminated composite plates. Prog Aerosp Sci. 2016;81:49–59.

    Article  Google Scholar 

  34. Reddy JN. Mechanics of laminated composite plates and shells: theory and analysis. New York: CRC Press; 2004.

    MATH  Google Scholar 

  35. Librescu L, Nosier A. Response of shear deformable elastic laminated composite panels to sonic boom and explosive blast loadings. Aiaa J. 1990;28(2):345–53.

    Article  MATH  Google Scholar 

  36. Kinnery GF, Graham KJ. Explosive shocks in air. Berlin: Springer; 1985.

    Book  Google Scholar 

  37. Brown PN, Byrne GD, Hindmarsh AC. VODE, a variable-coefficient ODE solver. SIAM J Sci Stat Comput. 1989;10:1038–51.

    Article  MathSciNet  MATH  Google Scholar 

  38. Hindmarsh AC. A systematized collection of ODE solvers. In: Stepleman RS, et al., editors. Scientific computing. IMACS transactions on scientific computation, vol. 1. Amsterdam: North-Holland; 1983. p. 55–64.

    Google Scholar 

  39. Radhakrishnan K, Hindmarsh AC. Description and use of LSODE, the Livermore solver for ordinary differential equations. LLNL report UCRL-ID-113855; 1993

  40. Brown PN, Hindmarsh AC. Reduced storage matrix methods in stiff ODE systems. J Comput Appl Math. 1989;31:40–91.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. X. Hao.

Additional information

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (NNSFC) through Grant No. 11472056 and Beijing Key Laboratory Open Research Project KF20171123202.

Appendix A

Appendix A

$$\begin{aligned} L_{11}= & {} \chi _{11} +\chi _{12} d_{11} +\chi _{13} d_{22} , \quad L_{12} =\chi _{14} d_{12} , \quad L_{13} =\chi _{15} d_{111} +\chi _{16} d_{122} +\chi _{17} d_1 \nonumber \\ L_{14}= & {} \chi _{18} +\chi _{19} d_{11} +\chi _{110} d_{22} , \quad L_{15} =\chi _{111} d_{12} , \quad L_{16} =\chi _{112} d_1 +\chi _{113} d_{111} +\chi _{114} d_{122} \nonumber \\ N_1 ({\bullet })= & {} \chi _{115} d_2 d_{12} +\chi _{116} d_1 d_{22} +\chi _{117} d_1 d_{11} \end{aligned}$$
(a)
$$\begin{aligned} L_{21}= & {} \chi _{21} d_{12} , \quad L_{22} =\chi _{22} +\chi _{23} d_{22} +\chi _{24} d_{11} , \quad L_{23} =\chi _{25} d_{112} +\chi _{26} d_{222} +\chi _{27} d_2 \nonumber \\ L_{24}= & {} \chi _{28} d_{12} , \quad L_{25} =\chi _{29} +\chi _{210} d_{11} +\chi _{211} d_{22} , \quad L_{26} =\chi _{212} d_2 +\chi _{213} d_{112} +\chi _{214} d_{222} \nonumber \\ N_2 ({\bullet })= & {} \chi _{215} d_1 d_{12} +\chi _{216} d_2 d_{11} +\chi _{217} d_2 d_{22} \end{aligned}$$
(b)
$$\begin{aligned} L_{31}= & {} \chi _{31} d_1 +\chi _{32} d_{122} +\chi _{33} d_{111} , \quad L_{32} =\chi _{34} d_2 +\chi _{35} d_{222} +\chi _{36} d_{112} \nonumber \\ L_{33}= & {} \chi _{37} +\chi _{38} d_{11} +\chi _{39} d_{1122} +\chi _{310} d_{2222} +\chi _{311} d_{1111} +\chi _{312} d_{22} \nonumber \\ L_{34}= & {} \chi _{313} d_1 +\chi _{314} d_{122} +\chi _{315} d_{111} , \quad L_{35} =\chi _{316} d_2 +\chi _{317} d_{222} +\chi _{318} d_{112}\nonumber \\ L_{36}= & {} \chi _{319} +\chi _{320} d_{1122} +\chi _{321} d_{2222} +\chi _{322} d_{1111} +\chi _{323} d_{22} +\chi _{324} d_{11} \nonumber \\ N_3 ({\bullet })= & {} \chi _{325} (d_{12} w_0 )^{2}+\chi _{326} d_{11} w_0 d_{11} w_1 +\chi _{327} d_{11} w_0 d_{12} w_0 +\chi _{328} d_{11} w_0 d_{22} w_0 +\chi _{329} d_{11} w_0 d_{22} w_1 \nonumber \\&\,+\chi _{330} (d_2 w_0 )^{2}d_{11} w_0 +\chi _{331} (d_2 w_0 )^{2}+\chi _{332} (d_2 w_0 )^{2}d_{22} w_0 +\chi _{333} d_2 v_0 d_{11} w_0\nonumber \\&+\,\chi _{334} d_1 \phi _y d_{12} w_0 +\chi _{335} w_1 d_{11} w_0 +\chi _{336} w_1 d_{22} w_0 +\chi _{337} d_2 \phi _x d_{12} w_0 +\chi _{338} d_2 v_0 d_{22} w_0\nonumber \\&+\,\chi _{339} d_2 \phi _y d_{11} w_0 +\chi _{340} d_2 \phi _y d_{22} w_0 +\chi _{341} d_1 \phi _x d_{11} w_0 +\chi _{342} d_1 \phi _x d_{22} w_0 +\chi _{343} (d_1 w_0 )^{2}d_{11} w_0\nonumber \\&+\,\chi _{344} (d_1 w_0 )^{2}+\chi _{345} (d_1 w_0 )^{2}d_{22} w_0 +\chi _{346} d_1 u_0 d_{11} w_0 +\chi _{347} d_1 u_0 d_{22} w_0 +\chi _{348} d_1 w_0 d_1 w_1\nonumber \\&+\,\chi _{349} d_1 w_0 d_2 w_0 d_{12} w_0 +\chi _{350} d_1 w_0 d_{11} u_0 +\chi _{351} d_1 w_0 d_{22} \phi _x +\chi _{352} d_1 w_0 d_{11} \phi _x\nonumber \\&+\,\chi _{353} d_1 w_0 d_{12} v_0 +\chi _{354} d_1 w_0 d_{12} \phi _y +\chi _{355} d_1 w_0 d_{22} u_0 +\chi _{356} d_1 w_0 d_{111} w_1\nonumber \\&+\,\chi _{357} d_1 w_0 d_{112} w_0 +\chi _{358} d_1 w_0 d_{122} w_0 +\chi _{359} d_1 w_0 d_{122} w_1 +\chi _{360} d_{22} w_0 d_{22} w_1 +\chi _{361} d_2 w_0 d_2 w_1\nonumber \\&+\,\chi _{362} d_2 w_0 d_{12} \phi _x +\chi _{363} d_2 w_0 d_{11} v_0 +\chi _{364} d_2 w_0 d_{22} v_0 +\chi _{365} d_2 w_0 d_{112} w_0 +\chi _{366} d_2 w_0 d_{112} w_1\nonumber \\&+\,\chi _{367} d_2 w_0 d_{222} w_1 +\chi _{368} d_{11} w_1 d_{22} w_0 +\chi _{369} d_2 u_0 d_{12} w_0 +\chi _{370} d_1 v_0 d_{12} w_0 +\chi _{371} w_0 d_{11} w_0\nonumber \\&+\,\chi _{372} d_{12} w_0 d_{12} w_1 +\chi _{373} w_0 d_{22} w_0 +\chi _{374} d_2 w_0 d_{11} \phi _y +\chi _{375} d_2 w_0 d_{12} u_0 \end{aligned}$$
(c)
$$\begin{aligned} L_{41}= & {} \chi _{41} +\chi _{42} d_{22} +\chi _{43} d_{11} , \quad L_{42} =\chi _{44} d_{12} , \quad L_{43} =\chi _{45} d_{111} +\chi _{46} d_{122} +\chi _{47} d_1 \nonumber \\ L_{44}= & {} \chi _{48} +\chi _{49} d_{11} +\chi _{410} d_{22} , \quad L_{45} =\chi _{411} d_{12} , \quad L_{46} =\chi _{412} d_1 +\chi _{413} d_{111} +\chi _{414} d_{122} \nonumber \\ N_4 ({\bullet })= & {} \chi _{415} d_1 d_{11} +\chi _{416} d_1 d_{22} +\chi _{417} d_2 d_{12} \end{aligned}$$
(d)
$$\begin{aligned} L_{51}= & {} \chi _{51} d_{12} , \quad L_{52} =\chi _{52} +\chi _{53} d_{22} +\chi _{54} d_{11} , \quad L_{53} =\chi _{55} d_{112} +\chi _{56} d_{222} +\chi _{57} d_2 \nonumber \\ L_{54}= & {} \chi _{58} d_{12} , \quad L_{55} =\chi _{59} +\chi _{510} d_{11} +\chi _{511} d_{22} , \quad L_{56} =\chi _{512} +\chi _{513} d_{222} +\chi _{514} d_{112}\nonumber \\ N_5 ({\bullet })= & {} \chi _{415} d_2 d_{11} +\chi _{416} d_2 d_{22} +\chi _{417} d_1 d_{12} \end{aligned}$$
(e)
$$\begin{aligned} L_{61}= & {} \chi _{61} d_{122} +\chi _{62} d_{111} +\chi _{63} d_1 , \quad L_{62} =\chi _{64} d_2 +\chi _{65} d_{222} +\chi _{66} d_{112} \nonumber \\ L_{63}= & {} \chi _{67} d_{2222} +\chi _{68} d_{1122} +\chi _{69} d_{11} +\chi _{610} d_{1111} +\chi _{611} +\chi _{612} d_{22} \nonumber \\ L_{64}= & {} \chi _{613} d_1 +\chi _{614} d_{122} +\chi _{615} d_{111} , \quad L_{65} =\chi _{616} d_{222} +\chi _{617} d_2 +\chi _{618} d_{112}\nonumber \\ L_{66}= & {} \chi _{619} +\chi _{620} d_{2222} +\chi _{621} d_{1122} +\chi _{622} d_{11} +\chi _{623} d_{1111} +\chi _{624} d_{22}\nonumber \\ N_6 ({\bullet })= & {} \chi _{625} (d_2 )^{2}+\chi _{626} d_2 d_{112} +\chi _{627} d_2 d_{222} +\chi _{628} d_{11} d_{22} +\chi _{629} (d_{11} )^{2}+\chi _{630} (d_{22} )^{2}\nonumber \\&+\,\chi _{631} d_{11} d_{12} +\chi _{632} (d_1 )^{2}+\chi _{633} d_1 d_{112} +\chi _{634} d_1 d_{111} +\chi _{635} d_1 d_{122} +\chi _{636} (d_{12} )^{2} \end{aligned}$$
(f)

with

$$\begin{aligned} d_i =\frac{\partial }{\partial \alpha _i }, d_{ij} =\frac{\partial ^{2}}{\partial \alpha _i \partial \alpha _j }, d_{ijl} =\frac{\partial ^{3}}{\partial \alpha _i \partial \alpha _j \partial \alpha _l }, d_{ijlm} =\frac{\partial ^{4}}{\partial \alpha _i \partial \alpha _j \partial \alpha _l \partial \alpha _m }\quad (i,j,l,m=1,2) \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z.N., Hao, Y.X., Zhang, W. et al. Nonlinear Transient Response of Functionally Graded Material Sandwich Doubly Curved Shallow Shell Using New Displacement Field. Acta Mech. Solida Sin. 31, 108–126 (2018). https://doi.org/10.1007/s10338-018-0008-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-018-0008-8

Keywords

Navigation