Skip to main content
Log in

Prediction of yield functions on BCC polycrystals

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

By the nonlinear optimization theory, we predict the yield function of single BCC crystals in Hill’s criterion form. Then we give a formula on the macroscopic yield function of a BCC polycrystal Ω under Sachs’ model, where the volume average of the yield functions of all BCC crystallites in Ω is taken as the macroscopic yield function of the BCC polycrystal. In constructing the formula, we try to find the relationship among the macroscopic yield function, the orientation distribution function (ODF), and the single BCC crystal’s plasticity. An expression for the yield stress of a uniaxial tensile problem is derived under Taylor’s model in order to compare the expression with that of the macroscopic yield function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bunge, H.J., Texture Analysis in Material Science: Mathematical Methods, London: Butterworths, 1982.

    Google Scholar 

  2. Roe, R.J., Description of crystallite orientation in polycrystalline materials: III, General solution to pole figures, J. Appl. Phys., Vol.36, 1965, 2024–2031.

    Article  Google Scholar 

  3. Roe, R.J., Inversion of pole figures for materials having cubic crystal symmetry, J. Appl. Phys., Vol.37, 1966, 2069–2072.

    Article  Google Scholar 

  4. Zheng, Q.-S. and Fu, Y.B., Orientation distribution functions for microstructures of heterogeneous materials: Part II. Applied Mathematics and Mechanics, Vol.22 2001, 885–903.

    Article  Google Scholar 

  5. Biedenharn, L.C. and Louck, J.D., Angular Momentum in Quantum Physics, Cambridge University Press, Cambridge, 1984.

    Book  Google Scholar 

  6. Man, C.-S., On the constitutive equations of some weakly-textured materials, Arch. Rational Mech., Vol.143, 1998, 77–103.

    Article  MathSciNet  Google Scholar 

  7. Morris, P.R., Averaging fourth-rank tensors with weight functions, J. Appl. Phys., Vol.40, 1969, 447–448.

    Article  Google Scholar 

  8. Sayers, C.M., Ultrasonic velocities in anisotropic polycrystalline aggregates, J. Phys. D., Vol.15, 1982, 2157–2167.

    Article  Google Scholar 

  9. Morris, P.R., Elastic constants of polycrystals, Int. J. Engng. Sci., Vol.8, 1970, 49–61.

    Article  Google Scholar 

  10. Huang, M., Elastic constants of a polycrystal with an orthorhombic texture, Mechanics of Materials, Vol.36, 2004, 623–632.

    Article  Google Scholar 

  11. Huang, M., Perturbation approach to elastic constitutive relations of polycrystals, J. Mech. Phys. Solids Vol.52 2004, 1827–1853.

    Article  MathSciNet  Google Scholar 

  12. Sachs, G., Zur ableilung einer fleissbedingung, Z. Verein Deut. Ing., Vol.72, 1928, 734–736.

    Google Scholar 

  13. Taylor, G.I., Plastic strain in metals, J. Inst. Met., Vol.62, 1938, 307–324.

    Google Scholar 

  14. Man, C.-S., On the correlation of elastic and plastic anisotropy in sheet metals, J. Elasticity, Vol.39, 1995, 165–173.

    Article  MathSciNet  Google Scholar 

  15. Man, C.-S. and Huang, M., Identification of material parameters in yield functions and flow rules for weakly textured sheets of cubic metals, International Journal of Non-linear Mechanics, Vol.36, 2001, 501–514.

    Article  Google Scholar 

  16. Khan, A.S. and Huang, S., Continuum Theory of Plasticity, John Wiley & Sons, Inc., New York, 1995.

    MATH  Google Scholar 

  17. Hosford, W.F., The Mechanics of Crystals and Textured Polycrystals, Oxford University, New York, 1993.

    Google Scholar 

  18. Huang, M., Lan, Z., and Liang, H., Constitutive relation of an orthorhombic polycrystal with the shape coefficients, Acta Mechanica Sinica, Vol.21, 2005, 608–618.

    Article  MathSciNet  Google Scholar 

  19. Gambin, W., Plasticity and Texture, Kluwer Academic Publishers, The Netherlands, 2001.

    Book  Google Scholar 

  20. Hill, R., The Mathematical Theory of Plasticity, Clarendon press, Oxford, 1950.

  21. Huang, M. and Man, C.-S., Constitutive relation of elastic polycrystal with quadratic texture dependence, J. Elasticity, Vol.72, 2003, 183–212.

    Article  MathSciNet  Google Scholar 

  22. Huang, M. and Zheng, C., Green’s function and effective elastic stiffness tensor for arbitrary aggregates of cubic crystals, Acta Mechanica Solida Sinica, Vol.17, No.4, 2004, 337–346.

    Google Scholar 

  23. Gass, S., Linear Programming Methods and Applications, McGraw-Hill, New York, 1985.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project supported by the National Natural Science Foundation of China (No.10562004), the Natural Science Foundation of Jiangxi (Nos.0450035 and 0512021), the Science Foundation of Jiangxi Educational Department (No.[2006]3) and the Oversea Returned Scholars Grant of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, M., Fu, M. & Zheng, C. Prediction of yield functions on BCC polycrystals. Acta Mech. Solida Sin. 19, 75–85 (2006). https://doi.org/10.1007/s10338-006-0609-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-006-0609-5

Key words

Navigation