Skip to main content
Log in

Magnetic Metal–Organic Framework Material Synthesized by Molecular Imprinting Technology for Analysis of Bisphenol A

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The use of plastic bags in the long-term contact with food may cause certain harm to human health due to the production process of plastic bags and the use of plasticizers such as BPA. Therefore, the analysis and research methods of BPA and other harmful substances are receiving extensive attention. Molecularly imprinted polymers have attracted much attention for their high selectivity, while magnetic metal–organic frameworks (MOFs) have been widely used for their excellent adsorption potential. However, the current methods of synthesizing these polymers typically require many steps and are time-consuming. Additionally, these methods involve the use of large amounts of solvents, which are not environmentally friendly and sustainable. This study proposed an easy, convenient, quick, and green method for synthesizing magnetic copper MOF molecularly imprinted polymers (MCMMIPs) using a one-pot technique to overcome these challenges. The resulting MCMMIPs exhibited excellent magnetic separation ability (20 emu/g), a large specific surface area (289.4 m2/g), and a well-defined imprinted cavity. MCMMIPs have been successfully applied to the extraction of BPA in plastic bags with a detection limit of 1.01 µg/kg and recoveries ranging from 72.1% to 102.85%. More importantly, the detection method proposed based on the material has been successfully applied to the detection of BPA in plastic bags, with a good detection effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets analyzed during the study are available from the corresponding author upon reasonable request.

References

  1. vom Saal FS, Vandenberg LN (2021) Endocrinology 162:171. https://doi.org/10.1210/endocr/bqaa171

    Article  CAS  Google Scholar 

  2. Xiao C, Wang L, Zhou Q, Huang X (2020) J Hazard Mater 384:121488. https://doi.org/10.1016/j.jhazmat.2019.121488

    Article  CAS  PubMed  Google Scholar 

  3. Hercog K, Maisanaba S, Filipic M, Sollner-Dolenc M, Kac L, Zegura B (2019) Sci Total Environ 687:267–276. https://doi.org/10.1016/j.scitotenv.2019.05.486

    Article  CAS  PubMed  Google Scholar 

  4. Gayrard V, Lacroix MZ, Grandin FC, Collet SH, Mila H, Viguie C, Gely CA, Rabozzi B, Bouchard M, Leandri R, Toutain PL, Picard-Hagen N (2019) Environ Health Perspect 127:77005. https://doi.org/10.1289/EHP4599

    Article  CAS  PubMed  Google Scholar 

  5. Moreman J, Lee O, Trznadel M, David A, Kudoh T, Tyler CR (2017) Environ Sci Technol 51:12796–12805. https://doi.org/10.1021/acs.est.7b03283

    Article  CAS  PubMed  Google Scholar 

  6. Huang M, Liu S, Fu L, Jiang X, Yang M (2020) Chemosphere 253:126707. https://doi.org/10.1016/j.chemosphere.2020.126707

    Article  CAS  PubMed  Google Scholar 

  7. Kim S, Lee I, Lim JE, Lee A, Moon HB, Park J, Choi K (2020) Sci Total Environ 744:140856. https://doi.org/10.1016/j.scitotenv.2020.140856

    Article  CAS  PubMed  Google Scholar 

  8. Zhu M, Li Y, Niu Y, Li J, Qin Z (2020) Environ Pollut 263:114443. https://doi.org/10.1016/j.envpol.2020.114443

    Article  CAS  PubMed  Google Scholar 

  9. Zhang C, Tao T, Yuan W, Zhang L, Zhang X, Yao J, Zhang Y, Lu H (2017) Anal Chem 89:4566–4572. https://doi.org/10.1021/acs.analchem.6b05071

    Article  CAS  PubMed  Google Scholar 

  10. Mei M, Huang X, Luo Q, Yuan D (2016) Anal Chem 88:1900–1907. https://doi.org/10.1021/acs.analchem.5b04328

    Article  CAS  PubMed  Google Scholar 

  11. Saraji M, Shahvar A (2017) Anal Chim Acta 973:51–58. https://doi.org/10.1016/j.aca.2017.04.029

    Article  CAS  PubMed  Google Scholar 

  12. Hamidi S, Taghvimi A, Mazouchi N (2021) Crit Rev Anal Chem 51:103–114. https://doi.org/10.1080/10408347.2019.1684235

    Article  CAS  PubMed  Google Scholar 

  13. Campos CDM, Gamage SST, Jackson JM, Witek MA, Park DS, Murphy MC, Godwin AK, Soper SA (2018) Lab Chip 18:3459–3470. https://doi.org/10.1039/c8lc00716k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alidoust M, Yamini Y, Baharfar M, Seidi S, Rasouli F (2021) Talanta 224:121864. https://doi.org/10.1016/j.talanta.2020.121864

    Article  CAS  PubMed  Google Scholar 

  15. Plotka-Wasylka J, Marc M, Szczepanska N, Namiesnik J (2017) Crit Rev Anal Chem 47:373–383. https://doi.org/10.1080/10408347.2017.1298987

    Article  CAS  PubMed  Google Scholar 

  16. Arul P, Huang ST, Gowthaman NSK, Mani G, Jeromiyas N, Shankar S, John SA (2021) Anal Chim Acta 1150:338228. https://doi.org/10.1016/j.aca.2021.338228

    Article  CAS  PubMed  Google Scholar 

  17. Luo Z, Chen H, Wu S, Yang C, Cheng J (2019) Chemosphere 237:124493. https://doi.org/10.1016/j.chemosphere.2019.124493

    Article  CAS  PubMed  Google Scholar 

  18. Huang X, Huang D, Chen J, Ye R, Lin Q, Chen S (2020) Anal Bioanal Chem 412:849–860. https://doi.org/10.1007/s00216-019-02282-3

    Article  CAS  PubMed  Google Scholar 

  19. Zhu C, Liu F, Ling C, Jiang H, Wu H, Li A (2019) Appl Catal B 242:238–248. https://doi.org/10.1016/j.apcatb.2018.09.088

    Article  CAS  Google Scholar 

  20. Yang S, Qiu X, Jin P, Dzakpasu M, Wang XC, Zhang Q, Zhang L, Yang L, Ding D, Wang W, Wu K (2018) Chem Eng J 353:329–339. https://doi.org/10.1016/j.cej.2018.07.105

    Article  CAS  Google Scholar 

  21. Liu C, Sun ZC, Pei WY, Yang J, Xu HL, Zhang JP, Ma JF (2021) Inorg Chem 60:12049–12058. https://doi.org/10.1021/acs.inorgchem.1c01253

    Article  CAS  PubMed  Google Scholar 

  22. Yang H, Wang B, Liu J-H, Cheng J, Yu L, Yu J, Wang P, Li J-R, Su X (2020) Sens Actuators B: Chem 314:128048. https://doi.org/10.1016/j.snb.2020.128048

    Article  CAS  Google Scholar 

  23. Ahsan MA, Jabbari V, Islam MT, Turley RS, Dominguez N, Kim H, Castro E, Hernandez-Viezcas JA, Curry ML, Lopez J, Gardea-Torresdey JL, Noveron JC (2019) Sci Total Environ 673:306–317. https://doi.org/10.1016/j.scitotenv.2019.03.219

    Article  CAS  PubMed  Google Scholar 

  24. Jiang H-L, Fu Q-B, Wang M-L, Lin J-M, Zhao R-S (2021) Food Chem 345:128841. https://doi.org/10.1016/j.foodchem.2020.128841

    Article  CAS  PubMed  Google Scholar 

  25. Wang X, Deng C (2015) Talanta 144:1329–1335. https://doi.org/10.1016/j.talanta.2015.08.014

    Article  CAS  PubMed  Google Scholar 

  26. Huang Y, Li Y, Luo Q, Huang X (2021) ACS Appl Mater Interfaces 13:37280–37288. https://doi.org/10.1021/acsami.1c11433

    Article  CAS  PubMed  Google Scholar 

  27. Zhou T, Wang Y, Li T, Li H, Yang C, Sun D, Wang D, Liu C, Che G (2021) Chem Eng J 420:129904. https://doi.org/10.1016/j.cej.2021.129904

    Article  CAS  Google Scholar 

  28. Zeng L, Cui H, Chao J, Huang K, Wang X, Zhou Y, Jing T (2020) Mikrochim Acta 187:142. https://doi.org/10.1007/s00604-020-4119-9

    Article  CAS  PubMed  Google Scholar 

  29. Asfaram A, Ghaedi M, Dashtian K (2017) Ultrason Sonochem 34:640–650. https://doi.org/10.1016/j.ultsonch.2016.06.018

    Article  CAS  PubMed  Google Scholar 

  30. Bagheri N, Khataee A, Habibi B, Hassanzadeh J (2018) Talanta 179:710–718. https://doi.org/10.1016/j.talanta.2017.12.009

    Article  CAS  PubMed  Google Scholar 

  31. Mohammadnejad M, Fakhrefatemi M (2021) J Mol Struct 1224:129041. https://doi.org/10.1016/j.molstruc.2020.129041

    Article  CAS  Google Scholar 

  32. Rajendran J, Kannan TS, Dhanasekaran LS, Murugan P, Atchudan R, Alothman ZA, Ouladsmane M, Sundramoorthy AK (2022) Chemosphere 287:132106. https://doi.org/10.1016/j.chemosphere.2021.132106

    Article  CAS  PubMed  Google Scholar 

  33. Cao XL, Popovic S (2018) Food Addit Contam Part A Chem Anal Control Expo Risk Assess 35:49–55. https://doi.org/10.1080/19440049.2017.1382730

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Hunan Provincial Natural Science Foundation of China (No. 2023JJ60146).

Funding

The authors are grateful to Hunan Provincial Natural Science Foundation of China via a project: No. 2023JJ60146.

Author information

Authors and Affiliations

Authors

Contributions

Binbin Zhou and Ming Zhong conceived the project. Yongbo Zhu wrote the manuscript. Yongbo Zhu and Meng Liang performed the UV-Vis, XRD, FTIR, SEM, VSM, TGA, BET assays and data analyses. Zuokun Zhang, Lijun Huang and Meng Liang completed the adsorption experiment.

Corresponding authors

Correspondence to Ming Zhong or Binbin Zhou.

Ethics declarations

Conflict of interest

All authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Liang, M., Liu, Y. et al. Magnetic Metal–Organic Framework Material Synthesized by Molecular Imprinting Technology for Analysis of Bisphenol A. Chromatographia 86, 669–676 (2023). https://doi.org/10.1007/s10337-023-04277-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-023-04277-w

Keywords

Navigation