Skip to main content
Log in

A Metal Organic Framework + Ionic Liquid Pseudophase System as a Gas Chromatography Stationary Phase

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Ionic liquids (ILs) containing colloidal metal organic frameworks (MOFs) have been used as gas chromatography stationary phases to provide distinct separation properties. The behavior of four different organic frameworks in 18 ionic liquids was investigated. Metal organic frameworks flocculated, degraded, or formed colloidal dispersions in ionic liquids. The newly developed stationary phase consisted of colloidal ZIF-8 uniformly dispersed in an imidazolium-based dicationic ionic liquid which provided the first separation of permanent gases via hybrid gas–liquid chromatography. In addition, various groups of alkanes, ketones, alcohols, ethers, and Rohrschneider-McReynolds compounds were separated on this newly developed hybrid stationary phase. Equations for the three-phase model were derived to determine the behavior of solutes with this pseudophase system. Using this model, the distribution constants between all three phases were calculated. It was shown that the metal organic framework had a significant effect on solute partitioning to the stationary phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Armstrong DW, He L, Liu YS (1999) Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography. Anal Chem 71:3873–3876. https://doi.org/10.1021/AC990443P

    Article  CAS  PubMed  Google Scholar 

  2. Li J-R, Sculley J, Zhou H-C (2012) Metal organic frameworks for separations. Chem Rev 112:869–932. https://doi.org/10.1021/cr200190s

    Article  CAS  PubMed  Google Scholar 

  3. Kotova AA, Thiebaut D, Vial J et al (2022) Metal-organic frameworks as stationary phases for chromatography and solid phase extraction: a review. Coord Chem Rev 455:214364. https://doi.org/10.1016/J.CCR.2021.214364

    Article  CAS  Google Scholar 

  4. Firooz SK, Armstrong DW (2022) Metal-organic frameworks in separations: a review. Anal Chim Acta 1234:340208. https://doi.org/10.1016/J.ACA.2022.340208

    Article  CAS  PubMed  Google Scholar 

  5. Anderson JL, Armstrong DW, Wei GT (2006) Ionic liquids in analytical chemistry. Anal Chem 78:2893–2902. https://doi.org/10.1021/AC069394O

    Article  CAS  Google Scholar 

  6. Han X, Armstrong DW (2007) Ionic liquids in separations. Acc Chem Res 40:1079–1086. https://doi.org/10.1021/ar700044y

    Article  CAS  PubMed  Google Scholar 

  7. Poole CF, Lenca N (2014) Gas chromatography on wall-coated open-tubular columns with ionic liquid stationary phases. J Chromatogr A 1357:87–109. https://doi.org/10.1016/J.CHROMA.2014.03.029

    Article  CAS  PubMed  Google Scholar 

  8. Talebi M, Patil RA, Armstrong DW (2020) Gas chromatography columns using ionic liquids as stationary phase. Springer International Publishing, Ch 6, pp 131–165. https://doi.org/10.1007/978-3-030-35245-5_6

    Book  Google Scholar 

  9. Ragonese C, Sciarrone D, Tranchida PQ et al (2012) Use of ionic liquids as stationary phases in hyphenated gas chromatography techniques. J Chromatogr A 1255:130–144. https://doi.org/10.1016/J.CHROMA.2012.04.069

    Article  CAS  PubMed  Google Scholar 

  10. Fang ZL, Zheng SR, Tan JB et al (2013) Tubular metal–organic framework-based capillary gas chromatography column for separation of alkanes and aromatic positional isomers. J Chromatogr A 1285:132–138. https://doi.org/10.1016/J.CHROMA.2013.02.024

    Article  CAS  PubMed  Google Scholar 

  11. Zhang C, Lively RP, Zhang K et al (2012) Unexpected molecular sieving properties of zeolitic imidazolate framework-8. J Phys Chem Lett 3:2130–2134. https://doi.org/10.1021/JZ300855A

    Article  CAS  PubMed  Google Scholar 

  12. Gu Z-Y, Yang C-X, Chang NA, Yan X-P (2012) Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc Chem Res 45:734–745. https://doi.org/10.1021/ar2002599

    Article  CAS  PubMed  Google Scholar 

  13. Ma S, Zhou HC (2010) Gas storage in porous metal–organic frameworks for clean energy applications. Chem Commun 46:44–53. https://doi.org/10.1039/B916295J

    Article  CAS  Google Scholar 

  14. Mason JA, Veenstra M, Long JR (2014) Evaluating metal-organic frameworks for natural gas storage. Chem Sci 5:2–51. https://doi.org/10.1039/c3sc52633j

    Article  CAS  Google Scholar 

  15. Fan L, Yan XP (2012) Evaluation of isostructural metal–organic frameworks coated capillary columns for the gas chromatographic separation of alkane isomers. Talanta 99:944–950. https://doi.org/10.1016/J.TALANTA.2012.07.063

    Article  CAS  PubMed  Google Scholar 

  16. Aslani S, Armstrong DW (2022) Ionic liquids as gas chromatography stationary phases. in: Ionic liquids in analytical chemistry, Ch 6. Elsevier, New York, pp 171–202. https://doi.org/10.1016/B978-0-12-823334-4.00011-4

    Chapter  Google Scholar 

  17. GC Column Selection Guide. https://www.sigmaaldrich.com/US/en/technical-documents/technical-article/analytical-chemistry/gas-chromatography/gc-column-selection-guide. Accessed 21 Sep 2022

  18. Anderson JL, Ding J, Welton T, Armstrong DW (2002) Characterizing ionic liquids on the basis of multiple solvation interactions. J Am Chem Soc 124:14247–14254. https://doi.org/10.1021/ja028156h

    Article  CAS  PubMed  Google Scholar 

  19. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2358. https://doi.org/10.1021/cr00032a005

    Article  CAS  Google Scholar 

  20. Carmichael AJ, Seddon KR (2000) Polarity study of some 1-alkyl-3-methylimidazolium ambient-temperature ionic liquids with the solvatochromic dye, Nile Red. J Phys Org Chem 13:591–595. https://doi.org/10.1002/1099-1395(200010)13:10%3C591::AID-POC305%3E3.0.CO;2-2

    Article  CAS  Google Scholar 

  21. Bonĥte P, Dias AP, Papageorgiou N et al (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178. https://doi.org/10.1021/ic951325x

    Article  Google Scholar 

  22. Abraham MH (1993) Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem Soc Rev 22:73–83. https://doi.org/10.1039/CS9932200073

    Article  CAS  Google Scholar 

  23. Mukherjee P, Crank JA, Sharma PS et al (2008) Dynamic solvation in phosphonium ionic liquids: comparison of bulk and micellar systems and considerations for the construction of the solvation correlation function, C(t). J Phys Chem B 112:3390–3396. https://doi.org/10.1021/jp7107126

    Article  CAS  PubMed  Google Scholar 

  24. Patil RA, Talebi M, Berthod A, Armstrong DW (2018) Dicationic ionic liquid thermal decomposition pathways. Anal Bioanal Chem 410:4645–4655. https://doi.org/10.1007/S00216-018-0878-0

    Article  CAS  PubMed  Google Scholar 

  25. Anderson JL, Ding R, Ellern A, Armstrong DW (2005) Structure and properties of high stability geminal dicationic ionic liquids. J Am Chem Soc 127:593–604. https://doi.org/10.1021/JA046521U

    Article  CAS  PubMed  Google Scholar 

  26. Maton C, de Vos N, Stevens CV (2013) Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev 42:5963–5977. https://doi.org/10.1039/C3CS60071H

    Article  CAS  PubMed  Google Scholar 

  27. Patil RA, Talebi M, Xu C et al (2016) Synthesis of thermally stable geminal dicationic ionic liquids and related ionic compounds: an examination of physicochemical properties by structural modification. Chem Mater 28:4315–4323. https://doi.org/10.1021/acs.chemmater.6b01247

    Article  CAS  Google Scholar 

  28. Payagala T, Huang J, Breitbach ZS et al (2007) Unsymmetrical dicationic ionic liquids: manipulation of physicochemical properties using specific structural architectures. Chem Mater 19:5848–5850. https://doi.org/10.1021/cm702325a

    Article  CAS  Google Scholar 

  29. Talebi M, Patil RA, Armstrong DW (2018) Physicochemical properties of branched-chain dicationic ionic liquids. J Mol Liq 256:247–255. https://doi.org/10.1016/J.MOLLIQ.2018.02.016

    Article  CAS  Google Scholar 

  30. Silva W, Zanatta M, Ferreira AS et al (2020) Revisiting ionic liquid structure-property relationship: a critical analysis. Int J Mol Sci 21:7745. https://doi.org/10.3390/IJMS21207745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiang S, Hu Y, Wang Y, Wang X (2019) Viscosity of typical room-temperature ionic liquids: a critical review. J Phys Chem Ref Data 48:033101. https://doi.org/10.1063/1.5090486

    Article  CAS  Google Scholar 

  32. Khan AS, Man Z, Arvina A et al (2017) Dicationic imidazolium based ionic liquids: synthesis and properties. J Mol Liq 227:98–105. https://doi.org/10.1016/J.MOLLIQ.2016.11.131

    Article  CAS  Google Scholar 

  33. Grob K, Grob G (1982) Static coating: an attempt to optimize a straightforward technique involving mechanical closure of the column. J High Resolut Chromatogr 5:119–123. https://doi.org/10.1002/JHRC.1240050302

    Article  CAS  Google Scholar 

  34. Guohong-Zhao, Xiaoqiang-Lei, Zhonglai-Wang et al (2003) In-situ preparation of integrated polymeric pora-U PLOT columns and their applications in gas. Chromatographia 58:465–469. https://doi.org/10.1365/s10337-003-0063-1

  35. Chang N, Gu ZY, Yan XP (2010) Zeolitic imidazolate framework-8 nanocrystal coated capillary for molecular sieving of branched alkanes from linear alkanes along with high-resolution chromatographic separation of linear alkanes. J Am Chem Soc 132:13645–13647. https://doi.org/10.1021/ja1058229

    Article  CAS  PubMed  Google Scholar 

  36. Nirmale TC, Khupse ND, Kalubarme RS et al (2022) Imidazolium-based dicationic ionic liquid electrolyte: strategy toward safer lithium-ion batteries. ACS Sustain Chem Eng 10:8297–8304. https://doi.org/10.1021/ACSSUSCHEMENG.2C00767

    Article  CAS  Google Scholar 

  37. Sumida K, Rogow DL, Mason JA et al (2012) Carbon dioxide capture in metal–organic frameworks. Chem Rev 112:724–781. https://doi.org/10.1021/cr2003272

    Article  CAS  PubMed  Google Scholar 

  38. Lee YR, Jang MS, Cho HY, et al (2015) ZIF-8: a comparison of synthesis methods. Chem Eng J 271:276–280. https://doi.org/10.1016/J.CEJ.2015.02.094

    Article  CAS  Google Scholar 

  39. Martin AJP, Synge RLM (1941) A new form of chromatogram employing two liquid phases. Biochem J 35:1358–1368. https://doi.org/10.1042/bj0351358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Armstrong DW, Nome F (1981) Partitioning behavior of solutes eluted with micellar mobile phases in liquid chromatography. Anal Chem 53:1662–1666. https://doi.org/10.1021/ac00234a026

    Article  CAS  Google Scholar 

  41. Menges RA, Armstrong DW (1991) Use of a three-phase model with hydroxypropyl-βy̧clodextrin for the direct determination of large octanol-water and cyclodextrin-water partition coefficients. Anal Chim Acta 255:157–162. https://doi.org/10.1016/0003-2670(91)85101-W

    Article  CAS  Google Scholar 

  42. Pino V, Lantz AW, Anderson JL et al (2006) Theory and use of the pseudophase model in gas-liquid chromatographic enantiomeric separations. Anal Chem 78:113–119. https://doi.org/10.1021/ac051289b

    Article  CAS  PubMed  Google Scholar 

  43. Lantz AW, Pino V, Anderson JL, Armstrong DW (2006) Determination of solute partition behavior with room-temperature ionic liquid based micellar gas-liquid chromatography stationary phases using the pseudophase model. J Chromatogr A 1115:217–224. https://doi.org/10.1016/J.CHROMA.2006.02.064

    Article  CAS  PubMed  Google Scholar 

  44. Gahm KH, Chang LW, Armstrong DW (1997) Chiral separation of monoterpenes using mixtures of sulfated β-cyclodextrins and α-cyclodextrin as chiral additives in the reversed-polarity capillary electrophoresis mode. J Chromatogr A 759:149–155. https://doi.org/10.1016/S0021-9673(96)00747-9

    Article  CAS  Google Scholar 

  45. Berthod A, Li W, Armstrong DW (1992) Multiple enantioselective retention mechanisms on derivatized cyclodextrin gas chromatographic chiral stationary phases. Anal Chem 64:873–879. https://doi.org/10.1021/ac00032a009

    Article  Google Scholar 

Download references

Acknowledgements

We thank Leonard M. Sidisky (Millipore Sigma) for coating the 30m capillary columns. We appreciate Enas Yousef for taking the digital microscope photos.

Funding

Support of this work by the Robert A. Welch (Y-0026) Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

AP: wrote the original draft, carried out GC and synthesis experimentation, and did the formal analysis as well as visualizations. SA carried out GC: and synthesis experiments. Contributed to data analysis and visualizations and writing the introduction and materials and methods. SKF: carried out GC experiments. DWA: conceptualized the project, proposed the methodology, supervised the project, acquired funding, reviewed, and edited the manuscript.

Corresponding author

Correspondence to Daniel W. Armstrong.

Ethics declarations

Conflict of Interest

The authors have no known competing financial interests non-financial interests to disclose.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, A., Aslani, S., Firooz, S.K. et al. A Metal Organic Framework + Ionic Liquid Pseudophase System as a Gas Chromatography Stationary Phase. Chromatographia 86, 415–424 (2023). https://doi.org/10.1007/s10337-023-04258-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-023-04258-z

Keywords

Navigation