Skip to main content
Log in

Solid-Phase Extraction and Simultaneous Fluorescence Detection of Cis-Diol-Containing Biomolecules Based on a Novel Boronate Affinity Material

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Boronate affinity materials have been widely studied in separation science, chemical sensing, drug delivery and nanomedicine due to their unique recognition mechanism towards cis-diol-containing biomolecules (cis-diols). In this paper, a new phenylboronic acid (PBA)-functionalized silica particle was prepared by one-pot synthetic strategy based on a PBA-coupled silane reagent, which was synthesized using 1,3,5-benzenetricarboxaldehyde as a spacer arm to covalently link 3-aminophenylboronic acid and 3-aminopropyltriethoxysiliane. Such PBA-functionalized silica particles displayed wrinkle shape with large surface area of 192 m2 g−1, resulting in its high binding capacities of 480 µmol g−1 for catechol and 63 µmol g−1 for adenosine. Moreover, the PBA-functionalized silica particles could rapidly extract the cis-diols in 10 min with a high binding recovery of 83–92%, much higher than its control polymers (1 ~ 47%). In addition to the good extraction performances, the PBA-functionalized silica particles also exhibited fluorescence responses to the cis-diols using two different excitation lights at 300 nm and 470 nm, giving emission lights at 379 nm and 631 nm, respectively, whose fluorescence-responsive mechanism was preliminarily studied. In summary, the developed boronate affinity silica particles can be used not only for the solid-phase extraction of cis-diols, but also to report the recognition events through the fluorescence signals, providing an idea to develop multi-functional boronate affinity materials for simultaneous enrichment and detection of cis-diols in biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Li DJ, Chen Y, Liu Z (2015) Boronate affinity materials for separation and molecular recognition: structure, properties and applications. Chem Soc Rev 44(22):8097–8123. https://doi.org/10.1039/c5cs00013k

    Article  CAS  PubMed  Google Scholar 

  2. Sun XL, Chapin BM, Metola P, Collins B, Wang BH, James TD, Anslyn EV (2019) The mechanisms of boronate ester formation and fluorescent turn-on in ortho-aminomethylphenylboronic acids. Nat Chem 11(9):768–778. https://doi.org/10.1038/s41557-019-0314-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li HY, He H, Liu Z (2021) Recent progress and application of boronate affinity materials in bioanalysis. Trac-Trends Anal Chem 140:116271. https://doi.org/10.1016/j.trac.2021.116271

    Article  CAS  Google Scholar 

  4. Zhai WL, Sun XL, James TD, Fossey JS (2015) Boronic acid-based carbohydrate sensing. Chem Asian J 10(9):1836–1848. https://doi.org/10.1002/asia.201500444

    Article  CAS  PubMed  Google Scholar 

  5. Wang W, Gao XM, Wang BH (2002) Boronic acid-based sensors. Curr Org Chem 6(14):1285–1317. https://doi.org/10.2174/1385272023373446

    Article  CAS  Google Scholar 

  6. Stubelius A, Lee S, Almutairi A (2019) The chemistry of boronic acids in nanomaterials for drug delivery. Acc Chem Res 52(11):3108–3119. https://doi.org/10.1021/acs.accounts.9b00292

    Article  CAS  PubMed  Google Scholar 

  7. Brooks WLA, Sumerlin BS (2016) Synthesis and applications of boronic acid-containing polymers: from materials to medicine. Chem Rev 116(3):1375–1397. https://doi.org/10.1021/acs.chemrev.5b00300

    Article  CAS  PubMed  Google Scholar 

  8. Li HY, Liu YC, Liu J, Liu Z (2011) A Wulff-type boronate for boronate affinity capture of cis-diol compounds at medium acidic pH condition. Chem Commun 47(28):8169–8171. https://doi.org/10.1039/c1cc11096a

    Article  CAS  Google Scholar 

  9. Li QJ, Lu CC, Liu Z (2013) Preparation and characterization of fluorophenylboronic acid-functionalized monolithic columns for high affinity capture of cis-diol containing compounds. J Chromatogr A 1305:123–130. https://doi.org/10.1016/j.chroma.2013.07.007

    Article  CAS  PubMed  Google Scholar 

  10. Pan GQ, Guo BB, Ma Y, Cui WG, He F, Li B, Yang HL, Shea KJ (2014) Dynamic introduction of cell adhesive factor via reversible multicovalent phenylboronic acid/cis-diol polymeric complexes. J Am Chem Soc 136(17):6203–6206. https://doi.org/10.1021/ja501664f

    Article  CAS  PubMed  Google Scholar 

  11. Zheng HW, Hajizadeh S, Gong HY, Lin H, Ye L (2021) Preparation of boronic acid-functionalized cryogels using modular and clickable building blocks for bacterial separation. J Agric Food Chem 69(1):135–145. https://doi.org/10.1021/acs.jafc.0c06052

    Article  CAS  PubMed  Google Scholar 

  12. Lin Z, Sun LX, Liu W, Xia ZW, Yang HH, Chen GN (2014) Synthesis of boronic acid-functionalized molecularly imprinted silica nanoparticles for glycoprotein recognition and enrichment. J Mat Chem B 2(6):637–643. https://doi.org/10.1039/c3tb21520b

    Article  CAS  Google Scholar 

  13. Liang L, Liu Z (2011) A self-assembled molecular team of boronic acids at the gold surface for specific capture of cis-diol biomolecules at neutral pH. Chem Commun 47(8):2255–2257. https://doi.org/10.1039/c0cc02540b

    Article  CAS  Google Scholar 

  14. Li DJ, Li QJ, Wang SS, Ye J, Nie HY, Liu Z (2014) Pyridinylboronic acid-functionalized organic-silica hybrid monolithic capillary for the selective enrichment and separation of cis-diol-containing biomolecules at acidic pH. J Chromatogr A 1339:103–109. https://doi.org/10.1016/j.chroma.2014.02.084

    Article  CAS  PubMed  Google Scholar 

  15. Wang SX, Li HH, Guan XJ, Cheng T, Zhang HX (2017) Silica - boronate affinity material for quick enrichment of intracellular nucleosides. Talanta 166:148–153. https://doi.org/10.1016/j.talanta.2017.01.048

    Article  CAS  PubMed  Google Scholar 

  16. Sungu C, Kip C, Tuncel A (2019) Molecularly imprinted polymeric shell coated monodisperse-porous silica microspheres as a stationary phase for microfluidic boronate affinity chromatography. J Sep Sci 42(11):1962–1971. https://doi.org/10.1002/jssc.201801258

    Article  CAS  PubMed  Google Scholar 

  17. Yao JT, Ma Y, Liu JX, Liu SC, Pan JM (2019) Janus-like boronate affinity magnetic molecularly imprinted nanobottles for specific adsorption and fast separation of luteolin. Chem Eng J 356:436–444. https://doi.org/10.1016/j.cej.2018.09.003

    Article  CAS  Google Scholar 

  18. Uddin KMA, Ye L (2013) Fluorogenic affinity gels constructed from clickable boronic acids. J Appl Polym Sci 128(3):1527–1533. https://doi.org/10.1002/app.38301

    Article  CAS  Google Scholar 

  19. Li QJ, Lu CC, Li HY, Liu YC, Wang HY, Wang X, Liu Z (2012) Preparation of organic-silica hybrid boronate affinity monolithic column for the specific capture and separation of cis-diol containing compounds. J Chromatogr A 1256:114–120. https://doi.org/10.1016/j.chroma.2012.07.063

    Article  CAS  PubMed  Google Scholar 

  20. Hazot P, Delair T, Elaissari A, Chapel JP, Pichot C (2002) Functionalization of poly(N-ethylmethacryl-amide) thermosensitive particles by phenylboronic acid. Colloid Polym Sci 280(7):637–646. https://doi.org/10.1007/s00396-002-0664-5

    Article  CAS  Google Scholar 

  21. Lin ZA, Pang JL, Yang HH, Cai ZW, Zhang L, Chen GN (2011) One-pot synthesis of an organic-inorganic hybrid affinity monolithic column for specific capture of glycoproteins. Chem Commun 47(34):9675–9677. https://doi.org/10.1039/c1cc13082j

    Article  CAS  Google Scholar 

  22. Duan R, Sun L, Yang HY, Ma YR, Deng XY, Peng C, Zheng C, Dong LY, Wang XH (2020) Preparation of phenyl-boronic acid polymeric monolith by initiator-free ring-opening polymerization for microextraction of sulfonamides prior to their determination by ultra-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1609:460510. https://doi.org/10.1016/j.chroma.2019.460510

    Article  CAS  PubMed  Google Scholar 

  23. Ren LB, Liu Z, Liu YC, Dou P, Chen HY (2009) Ring-opening polymerization with synergistic co-monomers: access to a boronate-functionalized polymeric monolith for the specific capture of cis-diol-containing biomolecules under neutral conditions. Angew Chem-Int Edit 48(36):6704–6707. https://doi.org/10.1002/anie.200902469

    Article  CAS  Google Scholar 

  24. Xu YW, Wu ZX, Zhang LJ, Lu HJ, Yang PY, Webley PA, Zhao DY (2009) Highly specific enrichment of glycopeptides using boronic Acid-functionalized mesoporous silica. Anal Chem 81(1):503–508. https://doi.org/10.1021/ac801912t

    Article  CAS  PubMed  Google Scholar 

  25. Pan XH, Chen Y, Zhao PX, Li DJ, Liu Z (2015) Highly efficient solid-phase labeling of saccharides within boronic acid functionalized mesoporous silica nanoparticles. Angew Chem-Int Edit 54(21):6173–6176. https://doi.org/10.1002/anie.201500331

    Article  CAS  Google Scholar 

  26. Bie ZJ, Chen Y, Ye J, Wang SS, Liu Z (2015) Boronate-affinity glycan-oriented surface imprinting: a new strategy to mimic lectins for the recognition of an intact glycoprotein and its characteristic fragments. Angew Chem-Int Edit 54(35):10211–10215. https://doi.org/10.1002/anie.201503066

    Article  CAS  Google Scholar 

  27. Xing RR, Wang SS, Bie ZJ, He H, Liu Z (2017) Preparation of molecularly imprinted polymers specific to glycoproteins, glycans and monosaccharides via boronate affinity controllable-oriented surface imprinting. Nat Protoc 12(5):964–987. https://doi.org/10.1038/nprot.2017.015

    Article  CAS  PubMed  Google Scholar 

  28. Guo ZC, Xing RR, He H, Liu Z (2019) Boronate affinity controllable oriented surface imprinting of glycans in organic phase using intact glycoproteins as semi-templates. Chin Sci Bull-Chin 64(13):1418–1426. https://doi.org/10.1360/N972018-01006

    Article  Google Scholar 

  29. Li HY, Zhang XM, Zhang L, Wang XJ, Kong FY, Fan DH, Li L, Wang W (2016) Preparation of a boronate affinity silica stationary phase with enhanced binding properties towards cis-diol compounds. J Chromatogr A 1473:90–98. https://doi.org/10.1016/j.chroma.2016.10.050

    Article  CAS  PubMed  Google Scholar 

  30. Jin Y, Wang TT, Li QJ, Wang FY, Li JL (2022) A microfluidic approach for rapid and continuous synthesis of glycoprotein-imprinted nanospheres. Talanta 239:123084. https://doi.org/10.1016/j.talanta.2021.123084

    Article  CAS  PubMed  Google Scholar 

  31. Li QJ, Wang TT, Jin Y, Wierzbicka C, Wang FY, Li JL, Sellergren B (2022) Synthesis of highly selective molecularly imprinted nanoparticles by a solid-phase imprinting strategy for fluorescence turn-on recognition of phospholipid. Sens. Actuator B-Chem. 368:132193. https://doi.org/10.1016/j.snb.2022.132193

    Article  CAS  Google Scholar 

  32. Zhu Y, Pan ZY, Rong J, Mao KL, Yang DY, Zhang T, Xu JC, Qiu FX, Pan JM (2021) Boronate affinity surface imprinted polymers supported on dendritic fibrous silica for enhanced selective separation of shikimic acid via covalent binding. J Mol Liq 337:116408. https://doi.org/10.1016/j.molliq.2021.116408

    Article  CAS  Google Scholar 

  33. Wang W, He MF, Wang CZ, Wei YM (2015) Enhanced binding capacity of boronate affinity adsorbent via surface modification of silica by combination of atom transfer radical polymerization and chain-end functionalization for high-efficiency enrichment of cis-diol molecules. Anal Chim Acta 886:66–74. https://doi.org/10.1016/j.aca.2015.06.015

    Article  CAS  PubMed  Google Scholar 

  34. Wang D, Qu Y, Wang FY, Li QJ, Cao QY (2022) One-pot synthesis of highly selective phenylboronic acid-functionalized organic polymers for the enrichment of cis-diol containing molecules. J Mater Sci 57(11):6182–6195. https://doi.org/10.1007/s10853-022-07068-0

    Article  CAS  Google Scholar 

  35. Li QJ, Tu XY, Ye J, Bie ZJ, Bi XD, Liu Z (2014) Nanoconfining affinity materials for pH-mediated protein capture-release. Chem Sci 5(10):4065–4069. https://doi.org/10.1039/c4sc01269k

    Article  CAS  Google Scholar 

  36. Yang Q, Huang DH, Zhou P (2014) Synthesis of a SiO2/TiO2 hybrid boronate affinity monolithic column for specific capture of glycoproteins under neutral conditions. Analyst 139:987–991. https://doi.org/10.1039/c3an02088f

    Article  CAS  PubMed  Google Scholar 

  37. Gao L, Du J, Wang CZ, Wei YM (2015) Fabrication of a dendrimer-modified boronate affinity material for online selective enrichment of cis-diol-containing compounds and its application in determination of nucleosides in urine. RSC Adv 5(128):106161–106170. https://doi.org/10.1039/c5ra18443f

    Article  CAS  Google Scholar 

  38. Wang Y, Zhou CP, Sun L, Yu BQ, Cao M, Zhong SA (2015) One-step synthesis of boronic acid group modified silica particles by the aid of epoxy silanes. Appl Surf Sci 351:353–357. https://doi.org/10.1016/j.apsusc.2015.05.120

    Article  CAS  Google Scholar 

  39. Li HY, Zhang XM, Zhang L, Cheng WH, Kong FY, Fan DH, Li L, Wang W (2017) Silica stationary phase functionalized by 4-carboxy-benzoboroxole with enhanced boronate affinity nature for selective capture and separation of cis-diol compounds. Anal Chim Acta 985:91–100. https://doi.org/10.1016/j.aca.2017.07.006

    Article  CAS  PubMed  Google Scholar 

  40. Kip C, Gulusur H, Celik E, Usta DD, Tuncel A (2019) Isolation of RNA and beta-NAD by phenylboronic acid functionalized, monodisperse-porous silica microspheres as sorbent in batch and microfluidic boronate affinity systems. Colloid Surf B-Biointerfaces 174:333–342. https://doi.org/10.1016/j.colsurfb.2018.11.012

    Article  CAS  Google Scholar 

  41. Jiang HP, Chu JM, Lan MD, Liu P, Yang N, Zheng F, Yuan BF, Feng YQ (2016) Comprehensive profiling of ribonucleosides modification by affinity zirconium oxide-silica composite monolithic column online solid-phase microextraction - mass spectrometry analysis. J Chromatogr A 1462:90–99. https://doi.org/10.1016/j.chroma.2016.07.086

    Article  CAS  PubMed  Google Scholar 

  42. Fang GQ, Wang H, Bian ZC, Sun J, Liu AQ, Fang H, Liu B, Yao QQ, Wu ZY (2018) Recent development of boronic acid-based fluorescent sensors. RSC Adv 8(51):29400–29427. https://doi.org/10.1039/c8ra04503h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21705073) and the Starting Research Fund of Nanjing Normal University (164320H133-12).

Funding

National Natural Science Foundation of China, 21705073, Starting Research Fund of Nanjing Normal University, 164320H133-12.

Author information

Authors and Affiliations

Authors

Contributions

QL, Conceptualization, Methodology, Supervision, Writing- Reviewing and Editing; TW, Investigation, Validation, Data curation; YH, Investigation, Validation, Data curation; DW, Investigation, Validation; SX, Investigation; CW, Investigation; QC, Manuscript revision, Funding acquisition; FW, Manuscript revision, Funding acquisition.

Corresponding authors

Correspondence to Qianjin Li, Qianyong Cao or Fenying Wang.

Ethics declarations

Conflict of Interest

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1075 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Wang, T., Hou, Y. et al. Solid-Phase Extraction and Simultaneous Fluorescence Detection of Cis-Diol-Containing Biomolecules Based on a Novel Boronate Affinity Material. Chromatographia 86, 387–399 (2023). https://doi.org/10.1007/s10337-023-04252-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-023-04252-5

Keywords

Navigation