Skip to main content
Log in

Supercritical Fluid Chromatography of Organic Bases Using a Modified Water Stationary Phase

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A supercritical fluid chromatography-flame ionization detection (SFC-FID) system employing a modified water stationary phase has been investigated for use in the analysis of organic bases. The method uses a stainless steel capillary column coated with water containing 0.5–1 M NH4OH, which is also used to hydrate the system. In this way, the pH of the water stationary phase can be effectively altered to help control the ionization of organic base analytes and greatly improve their peak shape and elution properties. This is in contrast to the poor results observed on a pure water stationary phase for basic analytes, which occurs due to their charged state in the otherwise naturally acidic CO2/water phase interface. Overall, the NH4OH modified system provided reliable FID response and showed good performance over a wide range of column temperatures and CO2 pressures, respectively, tested up to about 150 °C and 200 atm. Under isothermal conditions, some system instability usually began to onset at higher pressures, and the level needed for this also increased with temperature. The results show that this approach can be useful for the successful elution of bases over a wide range of pKa values (tested up to 10.4). Further, retention on the phase shows partial correlation to analyte pKa, but little relationship to boiling point. The method was successfully applied to the analysis of organic bases in several complex matrices, including the separation and detection of pharmaceuticals and their degradants. The results indicate that this SFC-FID method could be potentially beneficial to further explore for the analysis of organic bases in a variety of areas.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zajickova Z, Nováková L, Svec F (2020) Monolithic poly(styrene-co-divinylbenzene) columns for supercritical fluid chromatography–mass spectrometry analysis of polypeptide. Anal Chem 92:11525–11529

    Article  CAS  PubMed  Google Scholar 

  2. Pilařová V, Plachká K, Khalikova MA, Svec F, Nováková L (2019) Recent developments in supercritical fluid chromatography–mass spectrometry: is it a viable option for analysis of complex samples? Trac-Trend Anal Chem 112:212–225

    Article  Google Scholar 

  3. West C (2018) Current trends in supercritical fluid chromatography. Anal Bioanal Chem 410:6441–6457

    Article  CAS  PubMed  Google Scholar 

  4. Donato P, Inferrera V, Sciarrone D, Mondello L (2017) Supercritical fluid chromatography for lipid analysis in foodstuffs. J Sep Sci 40:361–382

    Article  CAS  PubMed  Google Scholar 

  5. Giuffrida D, Zoccali M, Giofrè SV, Dugo P, Mondello L (2017) Apocarotenoids determination in capsicum chinense jacq. cv. habanero, by supercritical fluid chromatography-triple-quadrupole/mass spectrometry. Food Chem 231:316–323

    Article  CAS  PubMed  Google Scholar 

  6. Rios A, Zougagh M, Andres F (2010) Bioanalytical applications using supercritical fluid techniques. Bioanalysis 2:9–25

    Article  CAS  PubMed  Google Scholar 

  7. Li G, Lv Y, Chen M, Ye X, Niu Z, Bai H, Lei H, Ma Q (2021) Post-chromatographic dicationic ionic liquid-based charge complexation for highly sensitive analysis of anionic compounds by ultra-high-performance supercritical fluid chromatography coupled with electrospray ionization mass spectrometry. Anal Chem 93:1771–1778

    Article  CAS  PubMed  Google Scholar 

  8. Lübeck JS, Tomasi G, Poulsen KG, Mante OD, Dayton DC, Verdier S, Christensen JH (2019) Nontarget analysis of oxygenates in catalytic fast pyrolysis biocrudes by supercritical fluid chromatography high-resolution mass spectrometry. Energy Fuels 33:296–306

    Article  Google Scholar 

  9. De Klerck K, Mangelings D, Vander Heyden Y (2012) Supercritical fluid chromatography for the enantioseparation of pharmaceuticals. J Pharm Biomed Anal 69:77–92

    Article  PubMed  Google Scholar 

  10. Korany MA, Mahgoub H, Haggag RS, Ragab MAA, Elmallah OA (2017) Green chemistry: analytical and chromatography. J Liq Chromatogr Relat Technol 40:839–852

    Article  CAS  Google Scholar 

  11. Saito M (2013) History of supercritical fluid chromatography: instrumental development. J Biosci Bioeng 115:590–599

    Article  CAS  PubMed  Google Scholar 

  12. Taylor LT (2009) Supercritical fluid chromatography for the 21st century. J Supercrit Fluids 47:566–573

    Article  CAS  Google Scholar 

  13. Lesellier E, West C (2015) The many faces of packed column supercritical fluid chromatography: a critical review. J Chromatogr A 1382:2–46

    Article  CAS  PubMed  Google Scholar 

  14. Cazenave-Gassiot A, Boughtflower R, Caldwell J, Hitzel L, Holyoak C, Lane S, Oakley P, Pullen F, Richardson S, Langley GJ (2009) Effect of increasing concentration of ammonium acetate as an additive in supercritical fluid chromatography using CO2–methanol mobile phase. J Chromatogr A 1216:6441–6450

    Article  CAS  PubMed  Google Scholar 

  15. Berger TA (1997) Separation of polar solutes by packed column supercritical fluid chromatography. J Chromatogr A 785:3–33

    Article  CAS  Google Scholar 

  16. Berger TA, Deye JF (1991) Role of additives in packed column supercritical fluid chromatography: suppression of solute ionization. J Chromatogr 547:377–392

    Article  CAS  Google Scholar 

  17. Chester TL, Pinkston JD (2002) Supercritical fluid and unified chromatography. Anal Chem 74:2801–2811

    Article  CAS  PubMed  Google Scholar 

  18. Fogwill MO, Thurbide KB (2010) Chromatography using a water stationary phase and a carbon dioxide mobile phase. Anal Chem 82:10060–10067

    Article  CAS  PubMed  Google Scholar 

  19. Murakami JN, Thurbide KB (2015) Coating properties of a novel water stationary phase in capillary supercritical fluid chromatography. J Sep Sci 38:1618–1624

    Article  CAS  PubMed  Google Scholar 

  20. Murakami JN, Thurbide KB (2015) Packed column supercritical fluid chromatography using stainless steel particles and water as a stationary phase. Anal Chem 87:9429–9435

    Article  CAS  PubMed  Google Scholar 

  21. Scott AF, Thurbide KB (2017) Retention characteristics of a pH tunable water stationary phase in supercritical fluid chromatography. J Chromatogr Sci 55:82–89

    Article  CAS  PubMed  Google Scholar 

  22. Li N, Chen C, Wang B, Li SJ, Yang CH, Chen XB (2015) Retardation effect of nitrogen compounds and condensed aromatics on shale oil catalytic cracking processing and their characterization. Appl Petrochem Res 5:285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Basheer C, Lee J, Pedersen-Bjergaard S, Rasmussen KE, Lee HK (2010) Simultaneous extraction of acidic and basic drugs at neutral sample pH: a novel electro-mediated micro extraction approach. J Chromatogr A 1217:6661–6667

    Article  CAS  PubMed  Google Scholar 

  24. Ternes TA (2001) Analytical methods for the determination of pharmaceuticals in aqueous environmental samples. Trac-Trend Anal Chem 20:419–434

    Article  CAS  Google Scholar 

  25. McCalley DV (2010) The challenges of the analysis of basic compounds by high performance liquid chromatography: some possible approaches for improved separations. J Chromatogr A 1217:858–880

    Article  CAS  PubMed  Google Scholar 

  26. Stella C, Seuret P, Rudaz S, Carrupt PA, Gauvrit JY, Lanteri P, Veuthey JL (2002) Characterization of chromatographic supports for the analysis of basic compounds. J Sep Sci 25:1351–1363

    Article  CAS  Google Scholar 

  27. Wiebe R, Gaddy VL (1940) The solubility of carbon dioxide in water at various temperatures from 12 to 40° and at pressures to 500 atmospheres. Critical phenomena. J Am Chem Soc 62:815–817

    Article  CAS  Google Scholar 

  28. Gallant JA, Thurbide KB (2014) Properties of water as a novel stationary phase in capillary gas chromatography. J Chromatogr A 1359:247–254

    Article  CAS  PubMed  Google Scholar 

  29. Liu Z, Tan Z, Wang D, Huang S, Wang L, Zhou H (2002) Simultaneous determination of fluoxetine and its metabolite p-trifluoromethylphenol in human liver microsomes using gas chromatographic electron capture detection procedure. J Chromatogr B Anal Technol Biomed Life Sci 769:305–311

    Article  CAS  Google Scholar 

  30. Lamas J, Salgado-Petinal C, García-Jares C, Llompart M, Cela R, Gómez M (2004) Solid phase micro-extraction-gas chromatography–mass spectrometry for the analysis of selective serotonin reuptake inhibitors in environmental water. J Chromatogr A 1046:241–247

    Article  PubMed  Google Scholar 

  31. Llerena A, Dorado P, Berecz R, González A, Norberto M, De la Rubia A (2003) Determination of fluoxetine and norfluoxetine in human plasma by high-performance liquid 425 chromatography with ultraviolet detection in psychiatric patients. J Chromatogr B Anal Technol Biomed Life Sci 783:25–31

    Article  CAS  Google Scholar 

  32. Ventura M, Murphy B, Goetzinger W (2012) Ammonia as a preferred additive in chiral and achiral applications of supercritical fluid chromatography for small, drug-like molecules. J Chromatogr 1220:147–155

    Article  CAS  Google Scholar 

  33. Kataoka H (2003) New trends in sample preparation for clinical and pharmaceutical analysis. Trends Anal Chem 22:232–244

    Article  CAS  Google Scholar 

  34. Kok SJ, Debets AJJ (2001) Fast sample preparation for analysis of tablets and capsules: the ball-mill extraction method. J Pharm Biomed Anal 26:599–604

    Article  CAS  PubMed  Google Scholar 

  35. Pathak A, Rajput SJ (2009) Development of a stability-indicating HPLC method for simultaneous determination of olanzapine and fluoxetine in combined dosage forms. J Chromatogr Sci 47:605–611

    Article  CAS  PubMed  Google Scholar 

  36. Yildiz D (2004) Nicotine, its metabolism and an overview of its biological effects. Toxicon 43:619–632

    Article  CAS  PubMed  Google Scholar 

  37. Mishra A, Chaturvedi P, Datta S, Sinukumar S, Joshi P, Garg A (2015) Harmful effects of nicotine. Indian J Med Paediatr Oncol 36:24–31

    Article  PubMed  PubMed Central  Google Scholar 

  38. Peace MR, Baird TR, Smith N, Wolf CE, Poklis JL, Poklis A (2016) Concentration of nicotine and glycols in 27 electronic cigarette formulations. J Anal Toxicol 40:403–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Laredo GC, Vega-Merino PM, Trejo-Zàrraga F, Catillo J (2013) Denitrogenation of distillates using adsorbent materials towards ULSD production: a review. Fuel Process Technol 106:21–32

    Article  CAS  Google Scholar 

  40. Thomson JS, Green JB, McWilliams TB, Yu SKT (1994) Analysis of amines in petroleum. J High Res Chromatogr 17:415–426

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC) for a Discovery Grant in support of this project.

Funding

This study was funded by an NSERC Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin B. Thurbide.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study does not involve any human or animal participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nai, E.A., Thurbide, K.B. Supercritical Fluid Chromatography of Organic Bases Using a Modified Water Stationary Phase. Chromatographia 85, 1087–1096 (2022). https://doi.org/10.1007/s10337-022-04208-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-022-04208-1

Keywords

Navigation