Skip to main content
Log in

Fabrication of Silica Microspheres for HPLC Packing with Narrow Particle Size Distribution and Different Pore Sizes by Hard Template Method for Protein Separation

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

An environment-friendly method for the fabrication of silica microspheres with tunable pore sizes and narrow particle size distribution was reported through the procedure of twice alkali-thermal reaction, deposition, and calcination. Porous mercaptopropyl-functionalized polysilsesquioxane (Mp-P) microspheres were used as hard templates, the pore size of the Mp-P microspheres can be enlarged by adjusting the reaction pH of the secondary alkali treatment. After modification of the allyl quaternary amine group by the “thiol-ene” click reaction, the mechanical strength of the microspheres can be improved through the electrostatically induced deposition of tetraethyl orthosilicate prepolymer (PES). The effects of the surface charge of template microspheres and the amount of PES deposition on pore structure and mechanical strength of the microspheres were investigated. After calcination, silica microspheres with different pore sizes can be obtained. Propyltrimethoxysilane was bound to the microspheres and used directly as chromatographic stationary phases without classification. The performance of the columns with different pore sizes was evaluated and compared in terms of retention factor, reduced plate height, and resolution for the separation of the protein mixture composed of ribonuclease A, insulin, cytochrome C, and bovine serum albumin. The results showed that the propyl column with a pore size of 18 nm was suitable for the separation of proteins with molecular weights up to 70 kDa, with high column efficiency and resolution.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Qiang TT, Zhu RT (2022) Bio-templated synthesis of porous silica nano adsorbents to wastewater treatment inspired by a circular economy. Sci Total Environ 819:152929. https://doi.org/10.1016/j.scitotenv.2022.152929

    Article  CAS  PubMed  Google Scholar 

  2. Zhao Y, Wang J, Yang Y, Fu Q, Ke Y (2022) Pseudomorphic synthesis of bimodal porous silica microspheres for size-exclusion chromatography of small molecules. J Chromatogr A 1664:462757. https://doi.org/10.1016/j.chroma.2021.462757

    Article  CAS  PubMed  Google Scholar 

  3. Vorotyntsev AV, Markov AN, Kapinos AA, Petukhov AN, Pryakhina VI, Nyuchev AV, Atlaskina ME, Andronova AA, Markova EA, Vorotyntsev VM (2020) Synthesis and comparative characterization of functionalized nanoporous silica obtained from tetrachloro- and tetraethoxysilane by a sol-gel method. Phosphorus Sulfur 196:176–188. https://doi.org/10.1080/10426507.2020.1825433

    Article  CAS  Google Scholar 

  4. Zhang HW, Li ML, Li JM, Agrawal A, Hui HW, Liu DM (2022) Superiority of mesoporous silica-based amorphous formulations over spray-dried solid dispersions. Pharmaceutics 14:428–443. https://doi.org/10.3390/pharmaceutics14020428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang XH, Wan GP, Ma SJ, Xia HJ, Wang J, Liu JW, Liu YN, Chen G, Bai Q (2020) Synthesis and optimization of SiO2@SiO2 core-shell microspheres by an improved polymerization-induced colloid aggregation method for fast separation of small solutes and proteins. Talanta 207:120310. https://doi.org/10.1016/j.talanta.2019.120310

    Article  CAS  PubMed  Google Scholar 

  6. Khoeini M, Najafi A, Rastegar H, Amani M (2019) Improvement of hollow mesoporous silica nanoparticles synthesis by hard-templating method via CTAB surfactant. Ceram Int 45:12700–12707. https://doi.org/10.1016/j.ceramint.2019.03.125

    Article  CAS  Google Scholar 

  7. Shi Y, Wang JZ, Yamamoto E, Osada M (2020) Hard-template synthesis of hollow mesoporous silica nanoplates using layered double hydroxide. Chem Lett 49:1078–1080. https://doi.org/10.1246/cl.200387

    Article  CAS  Google Scholar 

  8. Muramoto N, Sugiyama T, Matsuno T, Wada H, Kuroda K, Shimojima A (2020) Preparation of periodic mesoporous organosilica with large mesopores using silica colloidal crystals as templates. Nanoscale 12:21155–21164. https://doi.org/10.1039/d0nr03837g

    Article  CAS  PubMed  Google Scholar 

  9. Wu YL, Sun XT, Wang HY, Shen JW, Ke YX (2022) Pore size control of monodisperse mesoporous silica particles with alkyl lmidazole Ionic liquid templates for high performance liquid chromatography applications. Colloid Surf A 637:128200. https://doi.org/10.1016/j.colsurfa.2021.128200

    Article  CAS  Google Scholar 

  10. Chen X, Zhang S, Hou D, Duan H, Deng B, Zeng Z, Liu B, Sun L, Song R, Du J, Gao P, Peng H, Liu Z, Wang L (2021) Tunable pore size from sub-nanometer to a few nanometers in large-area graphene nanoporous atomically thin membranes. ACS Appl Mater Inter 25:29926–29935. https://doi.org/10.1021/acsami.1c06243

    Article  CAS  Google Scholar 

  11. Ahmed A, Myers P, Zhang HF (2014) Synthesis of nanospheres-on-microsphere silica with tunable shell morphology and mesoporosity for improved HPLC. Langmuir 30:12190–12199. https://doi.org/10.1021/la503015x

    Article  CAS  PubMed  Google Scholar 

  12. Chen JW, Zhu LL, Ren LB, Teng C, Wang Y, Jiang BW, He J (2018) Fabrication of monodisperse porous silica microspheres with a tunable particle size and pore size for protein separation. ACS Appl Bio Mater 1:604–612. https://doi.org/10.1021/acsabm.8b00088

    Article  CAS  PubMed  Google Scholar 

  13. Meng GD, Li YM, Wang ZD, Pan C, Gao WW, Cheng YH (2021) Preparation and characterization of narrow size distribution PMSQ microspheres for high-frequency electronic packaging. Materials 14:4233. https://doi.org/10.3390/ma14154233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Akhondi M, Jamalizadeh E (2021) Preparation of cubic and spherical hollow silica structures by polystyrene-poly diallyldimethylammonium chloride and polystyrene-poly ethyleneimine hard templates. Ceram Int 47:851–857. https://doi.org/10.1016/j.ceramint.2020.08.197

    Article  CAS  Google Scholar 

  15. Zhu YF, Shi JL, Chen HR, Shen WH, Dong XP (2005) A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property. Micropor Mesopor Mat 84:218–222. https://doi.org/10.1016/j.micromeso.2005.05.001

    Article  CAS  Google Scholar 

  16. Le Y, Chen JF, Wang WC (2004) Study on the silica hollow spheres by experiment and molecular simulation. Appl Surf Sci 230:319–326. https://doi.org/10.1016/j.apsusc.2004.02.042

    Article  CAS  Google Scholar 

  17. Yang J, Lee J, Kang J, Lee K, Suh JS, Yoon HG, Huh YM, Haam S (2008) Hollow silica nanocontainers as drug delivery vehicles. Langmuir 24:3417–3421. https://doi.org/10.1021/la701688t

    Article  CAS  PubMed  Google Scholar 

  18. Huo ZX, Wan QH, Chen L (2020) Energy-efficient and environment-friendly method to prepare monodispersed silica stationary phases for simultaneous separation of compound drugs. J Chromatogr A 1618:460866. https://doi.org/10.1016/j.chroma.2020.460866

    Article  CAS  PubMed  Google Scholar 

  19. Bianconi LP, Taviot-Gueho C, Constantino VRL, Bizeto MA (2022) Evaluation of the structural integrity of layered double hydroxides and mesoporous silica during the preparation of heterostructures. J Braz Chem Soc 00:1–8. https://doi.org/10.21577/0103-5053.20220041

    Article  Google Scholar 

  20. Savic S, Vojisavljevic K, Pocuca-Nesic M, Zivojevic K, Mladenovic M, Knezevic N (2018) Hard template synthesis of nanomaterials based on mesoporous silica. Metall Mater Eng 24:225–241. https://doi.org/10.30544/400

    Article  Google Scholar 

  21. He J, Yang C, Xiong X, Jiang B (2012) Preparation and characterization of monodisperse porous silica microspheres with controllable morphology and structure. J Polym Sci Pol Chem 50:2889–2897. https://doi.org/10.1002/pola.26066

    Article  CAS  Google Scholar 

  22. Xia HJ, Wan GP, Zhao JL, Liu JW, Bai Q (2016) Preparation and characterization of monodisperse large-porous silica microspheres as the matrix for protein separation. J Chromatogr A 1471:138–144. https://doi.org/10.1016/j.chroma.2016.10.025

    Article  CAS  PubMed  Google Scholar 

  23. Bai RT, Chang CQ, Chen L (2020) Preparation of highly responsive monodisperse magnetic porous silica microspheres for the enrichment of cephalosporins in wastewater. J Sep Sci 43:3765–3774. https://doi.org/10.1002/jssc.202000589

    Article  CAS  Google Scholar 

  24. Shi JJ, Zhang LX, Huo ZX, Chen L (2021) High stability amino-derived reversed-phase/anion-exchange mixed-mode phase based on polysilsesquioxane microspheres for simultaneous separation of compound drugs. J Pharmaceut Biomed 203:114187. https://doi.org/10.1016/j.jpba.2021.114187

    Article  CAS  Google Scholar 

  25. Li JL, Huo ZX, Chen L, Wan QH (2017) Mercaptopropyl functionalized polymethylsilsesquioxane microspheres prepared by co-condensation method as organosilica-based chromatographic packings. Chromatographia 80:1287–1297. https://doi.org/10.1007/s10337-017-3349-4

    Article  CAS  Google Scholar 

  26. Huo ZX, Chen L (2020) Base-deactivated and alkaline-resistant chromatographic stationary phase based on functionalized polymethylsilsesquioxane microspheres. J Sep Sci 43:389–397. https://doi.org/10.1002/jssc.201900634

    Article  CAS  PubMed  Google Scholar 

  27. Zhou XL, Wan QH (2015) Separation and identification of oligomeric ethyl silicates by liquid chromatography with electrospray ionization mass spectrometry. J Sep Sci 38:1484–1490. https://doi.org/10.1002/jssc.201401184

    Article  CAS  PubMed  Google Scholar 

  28. Huo ZX, Wan QH, Chen L (2018) Synthesis and evaluation of porous polymethylsilsesquioxane microspheres as low silanol activity chromatographic stationary phase for basic compound separation. J Chromatogr A 1553:90–100. https://doi.org/10.1016/j.chroma.2018.04.024

    Article  CAS  PubMed  Google Scholar 

  29. Soliven A, Dennis GR, Guiochon G, Hilder EF, Haddad PR, Shalliker RA (2010) Cyano bonded silica monolith-development of an in situ modification method for analytical scale columns. J Chromatogr A 1217:6085–6091. https://doi.org/10.1016/j.chroma.2010.07.052

    Article  CAS  PubMed  Google Scholar 

  30. Yildirim D, Gokcal B, Buber E, Kip C, Demir MC, Tuncel A (2021) A new nanozyme with peroxidase-like activity for simultaneous phosphoprotein isolation and detection based on metal oxide affinity chromatography: monodisperse-porous cerium oxide microspheres. Chem Eng J 403:126357. https://doi.org/10.1016/j.cej.2020.126357

    Article  CAS  Google Scholar 

  31. Rusli H, Putri RM, Alni A (2022) Recent developments of liquid chromatography stationary phases for compound separation: from proteins to small organic compounds. Molecules 27:907. https://doi.org/10.3390/molecules27030907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang JZ, Wang JS, Ning XH, Liu J, Xia H, Wan G, Bai Q (2021) pH-dependent selective separation of acidic and basic proteins using quaternary ammoniation functionalized cysteine-zwitterionic stationary phase with RPLC/IEC mixed-mode chromatography. Talanta 225:122084. https://doi.org/10.1016/j.talanta.2021.122084

    Article  CAS  PubMed  Google Scholar 

  33. Zhao LS, Li SS, Wang WH, Wang YH, Du KF (2021) Preparation and characterization of highly porous cellulose-agarose composite chromatographic microspheres for enhanced selective separation of histidine-rich proteins. J Chromatogr A 1637:461831. https://doi.org/10.1016/j.chroma.2020.461831

    Article  CAS  PubMed  Google Scholar 

  34. Qu Q, Si Y, Xuan H, Zhang K, Chen X, Ding Y, Feng S, Yu HQ, Abdullah MA, Alamry KA (2018) Dendritic core-shell silica spheres with large pore size for separation of biomolecules. J Chromatogr A 1540:31–37. https://doi.org/10.1016/j.chroma.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  35. Qu Q, Si Y, Xuan H, Zhang K, Chen X, Ding Y, Feng S, Yu H-Q (2018) Synthesis of core-shell silica spheres with tunable pore diameters for HPLC. Mater Lett 211:40–42. https://doi.org/10.1016/j.matlet.2017.09.087

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Xing-Hua Jin and Yan Gao from the Analytical Center of the School of Pharmaceutical Science & Technology for their assistance in the measure of elemental analysis and zeta potential.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

YJ: investigation, analysis, data curation and writing the original draft. XG: silica microsphere synthesis conditions optimization. CQ: basic tests on columns. LC: supervision, resources, project administration, review and edit of the manuscript.

Corresponding author

Correspondence to Lei Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 564 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, Y., Guo, X., Qi, C. et al. Fabrication of Silica Microspheres for HPLC Packing with Narrow Particle Size Distribution and Different Pore Sizes by Hard Template Method for Protein Separation. Chromatographia 85, 985–995 (2022). https://doi.org/10.1007/s10337-022-04200-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-022-04200-9

Keywords

Navigation