Skip to main content
Log in

Analysis of 17-Hydroxygeranyllinalool Diterpene Glycosides in Nicotiana tabacum by Using Heart-Cutting 2D-LC Coupled with Tandem MS Technique

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Nicotiana tabacum was found to have the potent anti-herbivore defense capacity by secondary metabolites of 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). A heart-cutting two-dimensional LC coupled with tandem MS method was developed to analysis the HGL-DTGs. And 10 types of HGL-DTGs were determined qualitatively and quantitatively. In the novel method, reversed-phase liquid chromatography (RPLC) had been employed in the first dimension for separation of HGL-DTGs with other interference compounds. Then target elution, including HGL-DTGs, was cut to the trap column by online dilution from the additional pump. The analytes of HGL-DTGs were reserved and enriched on the trap column. After switch of the 6-port valve, the analytes were eluted to the second dimensional separation. The HGL-DTGs were then determined by the tandem MS under the multiple reaction monitoring mode (MRM). The intra-day and inter-day RSD of the HGL-DTGs were between 0.24 and 7.21%. Consequently, the new method was successfully utilized to detect the HGL-DTGs levels in a wide range of the tobacco samples, which showed fairly good accuracy and reproducibility. The new strategy offered a simple and fast way for further investigation of the HGL-DTGs in Nicotiana tabacum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2D-LC–MS/MS:

Two-dimensional liquid chromatography–tandem mass spectrometry;

LC-LC:

Heart-cutting

RPLC:

Reversed-phase liquid chromatography;

HGL-DTGs:

17-Hydroxygeranyllinalool diterpene glycosides;

MRM:

Multiple reaction monitoring;

ACN:

Acetonitrile

References

  1. Heiling S, Llorca LC, Li J, Gase K, Schmidt A, Schäfer M, Schneider B, Halitschke R, Gaquerel E, Baldwin IT (2021) Plant Cell 33:1748–1770

    Article  Google Scholar 

  2. Macías FA, López A, Varela RM, Torres A, Molinillo JM (2008) J Chem Ecol 34:65–69

    Article  Google Scholar 

  3. Lee J-H, Kiyota N, Ikeda T, Nohara T (2007) Chem Pharm Bull 55:1151–1156

    Article  CAS  Google Scholar 

  4. Roda AL, Oldham NJ, Svatos A, Baldwin IT (2003) Phytochemistry 62:527–536

    Article  CAS  Google Scholar 

  5. Heiling S, Schuman MC, Schoettner M, Mukerjee P, Berger B, Schneider B, Jassbi AR, Baldwin IT (2010) Plant Cell 22:273–292

    Article  CAS  Google Scholar 

  6. St ĐINH, Galis I, Baldwin IT (2013) Plant Cell Environ 36:590–606

    Article  Google Scholar 

  7. Woldemariam MG, Dinh ST, Oh Y, Gaquerel E, Baldwin IT, Galis I (2013) BMC Plant Biol 13:1–14

    Article  Google Scholar 

  8. Jassbi AR, Gase K, Hettenhausen C, Schmidt A, Baldwin IT (2008) Plant Physiol 146:974–986

    Article  CAS  Google Scholar 

  9. Snook ME, Johnson AW, Severson RF, Teng Q, White RA, Sisson VA, Jackson DM (1997) J Agric Food Chem 45:2299–2308

    Article  CAS  Google Scholar 

  10. Adam N, Erler T, Kallenbach M, Kaltenpoth M, Kunert G, Baldwin IT, Schuman MC (2017) J Integr Plant Biol 59:44–59

    Article  CAS  Google Scholar 

  11. Jassbi AR, Zamanizadehnajari S, Baldwin IT (2010) Phytochemistry 71:1115–1121

    Article  CAS  Google Scholar 

  12. Bozorov TA, Dinh ST, Baldwin IT (2017) J Integr Plant Biol 59:552–571

    Article  CAS  Google Scholar 

  13. Ibáñez AJ, Scharte J, Bones P, Pirkl A, Meldau S, Baldwin IT, Hillenkamp F, Weis E, Dreisewerd K (2010) Plant Methods 6:1–16

    Article  Google Scholar 

  14. Shen S, Chen M, Wang X, Fei T, Yang D, Cao M, Wu D (2020) J Sep Sci 43:3467–3473

    Article  CAS  Google Scholar 

  15. Hinzke T, Kouris A, Hughes R-A, Strous M, Kleiner M (2019) Front Microbiol 10:238

    Article  Google Scholar 

  16. Chemmalil L, Wasalathanthri DP, Zhang X, Kuang J, Shao C, Barbour R, Bhavsar S, Prabhakar T, Knihtila R, West J (2021) Biotechnol Bioeng 118:3593–3603

    Article  CAS  Google Scholar 

  17. Ali I, Suhail M, Aboul-Enein HY, Kon’kova T (2021) Chromatographia 84:535–548. https://doi.org/10.1007/s10337-021-04030-1

    Article  CAS  Google Scholar 

  18. Pua A, Goh RMV, Ee K-H, Huang Y, Liu SQ, Lassabliere B, Yu B (2021) Chromatographia 84:507–515. https://doi.org/10.1007/s10337-021-04027-w

    Article  CAS  Google Scholar 

  19. Pirok BW, Stoll DR, Schoenmakers PJ (2018) Anal Chem 91:240–263

    Article  Google Scholar 

  20. Lee C, Zang J, Cuff J, McGachy N, Natishan TK, Welch CJ, Helmy R, Bernardoni F (2013) Chromatographia 76:5–11

    Article  CAS  Google Scholar 

  21. Chen M, Wang L, Dong H, Shao X, Wu D, Liu B, Zhang X, Chen C (2017) J Sep Sci 40:1920–1927

    Article  CAS  Google Scholar 

  22. Gray TR, Shakleya DM, Huestis MA (2009) Anal Bioanal Chem 393:1977–1990

    Article  CAS  Google Scholar 

  23. Heiling S, Khanal S, Barsch A, Zurek G, Baldwin IT, Gaquerel E (2016) Plant J 85:561–577

    Article  CAS  Google Scholar 

  24. Zhang L, Oh Y, Li H, Baldwin IT, Galis I (2012) Plant Physiol 160:1453–1467

    Article  CAS  Google Scholar 

  25. Falara V, Alba JM, Kant MR, Schuurink RC, Pichersky E (2014) Plant Physiol 166:428–441

    Article  Google Scholar 

  26. Liu Y, Xue X, Guo Z, Xu Q, Zhang F, Liang X (2008) J Chromatogr A 1208:133–140

    Article  CAS  Google Scholar 

  27. Li D, Jakob C, Schmitz O (2015) Anal Bioanal Chem 407:153–167

    Article  CAS  Google Scholar 

  28. Karongo R, Ikegami T, Stoll DR, Lämmerhofer M (2020) J Chromatogr A 1627:461430

    Article  CAS  Google Scholar 

  29. Cacciola F, Arena K, Mandolfino F, Donnarumma D, Dugo P, Mondello L (2021) J Chromatogr A 1645:462129

    Article  CAS  Google Scholar 

  30. Rampler E, Criscuolo A, Zeller M, El Abiead Y, Schoeny H, Hermann G, Sokol E, Cook K, Peake DA, Delanghe B (2018) Anal Chem 90:6494–6501

    Article  CAS  Google Scholar 

  31. Zhang J, Jin Y, Liu Y, Xiao Y, Feng J, Xue X, Zhang X, Liang X (2009) J Sep Sci 32:2084–2089

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da Wu or Jie Lu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 14 KB)

Supplementary file2 (DOCX 2207 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Wang, T., Wang, W. et al. Analysis of 17-Hydroxygeranyllinalool Diterpene Glycosides in Nicotiana tabacum by Using Heart-Cutting 2D-LC Coupled with Tandem MS Technique. Chromatographia 85, 931–937 (2022). https://doi.org/10.1007/s10337-022-04188-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-022-04188-2

Keywords

Navigation